2024-05-14 更新
A visualization method for data domain changes in CNN networks and the optimization method for selecting thresholds in classification tasks
Authors:Minzhe Huang, Changwei Nie, Weihong Zhong
In recent years, Face Anti-Spoofing (FAS) has played a crucial role in preserving the security of face recognition technology. With the rise of counterfeit face generation techniques, the challenge posed by digitally edited faces to face anti-spoofing is escalating. Existing FAS technologies primarily focus on intercepting physically forged faces and lack a robust solution for cross-domain FAS challenges. Moreover, determining an appropriate threshold to achieve optimal deployment results remains an issue for intra-domain FAS. To address these issues, we propose a visualization method that intuitively reflects the training outcomes of models by visualizing the prediction results on datasets. Additionally, we demonstrate that employing data augmentation techniques, such as downsampling and Gaussian blur, can effectively enhance performance on cross-domain tasks. Building upon our data visualization approach, we also introduce a methodology for setting threshold values based on the distribution of the training dataset. Ultimately, our methods secured us second place in both the Unified Physical-Digital Face Attack Detection competition and the Snapshot Spectral Imaging Face Anti-spoofing contest. The training code is available at https://github.com/SeaRecluse/CVPRW2024.
PDF
点此查看论文截图
Hyp-OC: Hyperbolic One Class Classification for Face Anti-Spoofing
Authors:Kartik Narayan, Vishal M. Patel
Face recognition technology has become an integral part of modern security systems and user authentication processes. However, these systems are vulnerable to spoofing attacks and can easily be circumvented. Most prior research in face anti-spoofing (FAS) approaches it as a two-class classification task where models are trained on real samples and known spoof attacks and tested for detection performance on unknown spoof attacks. However, in practice, FAS should be treated as a one-class classification task where, while training, one cannot assume any knowledge regarding the spoof samples a priori. In this paper, we reformulate the face anti-spoofing task from a one-class perspective and propose a novel hyperbolic one-class classification framework. To train our network, we use a pseudo-negative class sampled from the Gaussian distribution with a weighted running mean and propose two novel loss functions: (1) Hyp-PC: Hyperbolic Pairwise Confusion loss, and (2) Hyp-CE: Hyperbolic Cross Entropy loss, which operate in the hyperbolic space. Additionally, we employ Euclidean feature clipping and gradient clipping to stabilize the training in the hyperbolic space. To the best of our knowledge, this is the first work extending hyperbolic embeddings for face anti-spoofing in a one-class manner. With extensive experiments on five benchmark datasets: Rose-Youtu, MSU-MFSD, CASIA-MFSD, Idiap Replay-Attack, and OULU-NPU, we demonstrate that our method significantly outperforms the state-of-the-art, achieving better spoof detection performance.
PDF Accepted in FG2024, Project Page - https://kartik-3004.github.io/hyp-oc/