2024-04-17 更新
Can Contrastive Learning Refine Embeddings
Authors:Lihui Liu, Jinha Kim, Vidit Bansal
Recent advancements in contrastive learning have revolutionized self-supervised representation learning and achieved state-of-the-art performance on benchmark tasks. While most existing methods focus on applying contrastive learning to input data modalities such as images, natural language sentences, or networks, they overlook the potential of utilizing outputs from previously trained encoders. In this paper, we introduce SIMSKIP, a novel contrastive learning framework that specifically refines input embeddings for downstream tasks. Unlike traditional unsupervised learning approaches, SIMSKIP takes advantage of the output embeddings of encoder models as its input. Through theoretical analysis, we provide evidence that applying SIMSKIP does not result in larger upper bounds on downstream task errors than those of the original embeddings, which serve as SIMSKIP’s input. Experimental results on various open datasets demonstrate that the embeddings produced by SIMSKIP improve performance on downstream tasks.
PDF
点此查看论文截图
Contrastive Mean-Shift Learning for Generalized Category Discovery
Authors:Sua Choi, Dahyun Kang, Minsu Cho
We address the problem of generalized category discovery (GCD) that aims to partition a partially labeled collection of images; only a small part of the collection is labeled and the total number of target classes is unknown. To address this generalized image clustering problem, we revisit the mean-shift algorithm, i.e., a classic, powerful technique for mode seeking, and incorporate it into a contrastive learning framework. The proposed method, dubbed Contrastive Mean-Shift (CMS) learning, trains an image encoder to produce representations with better clustering properties by an iterative process of mean shift and contrastive update. Experiments demonstrate that our method, both in settings with and without the total number of clusters being known, achieves state-of-the-art performance on six public GCD benchmarks without bells and whistles.
PDF Accepted at CVPR 2024