视频生成


2024-04-17 更新

THQA: A Perceptual Quality Assessment Database for Talking Heads

Authors:Yingjie Zhou, Zicheng Zhang, Wei Sun, Xiaohong Liu, Xiongkuo Min, Zhihua Wang, Xiao-Ping Zhang, Guangtao Zhai

In the realm of media technology, digital humans have gained prominence due to rapid advancements in computer technology. However, the manual modeling and control required for the majority of digital humans pose significant obstacles to efficient development. The speech-driven methods offer a novel avenue for manipulating the mouth shape and expressions of digital humans. Despite the proliferation of driving methods, the quality of many generated talking head (TH) videos remains a concern, impacting user visual experiences. To tackle this issue, this paper introduces the Talking Head Quality Assessment (THQA) database, featuring 800 TH videos generated through 8 diverse speech-driven methods. Extensive experiments affirm the THQA database’s richness in character and speech features. Subsequent subjective quality assessment experiments analyze correlations between scoring results and speech-driven methods, ages, and genders. In addition, experimental results show that mainstream image and video quality assessment methods have limitations for the THQA database, underscoring the imperative for further research to enhance TH video quality assessment. The THQA database is publicly accessible at https://github.com/zyj-2000/THQA.
PDF

点此查看论文截图

LoopAnimate: Loopable Salient Object Animation

Authors:Fanyi Wang, Peng Liu, Haotian Hu, Dan Meng, Jingwen Su, Jinjin Xu, Yanhao Zhang, Xiaoming Ren, Zhiwang Zhang

Research on diffusion model-based video generation has advanced rapidly. However, limitations in object fidelity and generation length hinder its practical applications. Additionally, specific domains like animated wallpapers require seamless looping, where the first and last frames of the video match seamlessly. To address these challenges, this paper proposes LoopAnimate, a novel method for generating videos with consistent start and end frames. To enhance object fidelity, we introduce a framework that decouples multi-level image appearance and textual semantic information. Building upon an image-to-image diffusion model, our approach incorporates both pixel-level and feature-level information from the input image, injecting image appearance and textual semantic embeddings at different positions of the diffusion model. Existing UNet-based video generation models require to input the entire videos during training to encode temporal and positional information at once. However, due to limitations in GPU memory, the number of frames is typically restricted to 16. To address this, this paper proposes a three-stage training strategy with progressively increasing frame numbers and reducing fine-tuning modules. Additionally, we introduce the Temporal E nhanced Motion Module(TEMM) to extend the capacity for encoding temporal and positional information up to 36 frames. The proposed LoopAnimate, which for the first time extends the single-pass generation length of UNet-based video generation models to 35 frames while maintaining high-quality video generation. Experiments demonstrate that LoopAnimate achieves state-of-the-art performance in both objective metrics, such as fidelity and temporal consistency, and subjective evaluation results.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录