NeRF/3DGS


2024-04-17 更新

3D Geometry-aware Deformable Gaussian Splatting for Dynamic View Synthesis

Authors:Zhicheng Lu, Xiang Guo, Le Hui, Tianrui Chen, Min Yang, Xiao Tang, Feng Zhu, Yuchao Dai

In this paper, we propose a 3D geometry-aware deformable Gaussian Splatting method for dynamic view synthesis. Existing neural radiance fields (NeRF) based solutions learn the deformation in an implicit manner, which cannot incorporate 3D scene geometry. Therefore, the learned deformation is not necessarily geometrically coherent, which results in unsatisfactory dynamic view synthesis and 3D dynamic reconstruction. Recently, 3D Gaussian Splatting provides a new representation of the 3D scene, building upon which the 3D geometry could be exploited in learning the complex 3D deformation. Specifically, the scenes are represented as a collection of 3D Gaussian, where each 3D Gaussian is optimized to move and rotate over time to model the deformation. To enforce the 3D scene geometry constraint during deformation, we explicitly extract 3D geometry features and integrate them in learning the 3D deformation. In this way, our solution achieves 3D geometry-aware deformation modeling, which enables improved dynamic view synthesis and 3D dynamic reconstruction. Extensive experimental results on both synthetic and real datasets prove the superiority of our solution, which achieves new state-of-the-art performance. The project is available at https://npucvr.github.io/GaGS/
PDF Accepted by CVPR 2024. Project page: https://npucvr.github.io/GaGS/

点此查看论文截图

OccGaussian: 3D Gaussian Splatting for Occluded Human Rendering

Authors:Jingrui Ye, Zongkai Zhang, Yujiao Jiang, Qingmin Liao, Wenming Yang, Zongqing Lu

Rendering dynamic 3D human from monocular videos is crucial for various applications such as virtual reality and digital entertainment. Most methods assume the people is in an unobstructed scene, while various objects may cause the occlusion of body parts in real-life scenarios. Previous method utilizing NeRF for surface rendering to recover the occluded areas, but it requiring more than one day to train and several seconds to render, failing to meet the requirements of real-time interactive applications. To address these issues, we propose OccGaussian based on 3D Gaussian Splatting, which can be trained within 6 minutes and produces high-quality human renderings up to 160 FPS with occluded input. OccGaussian initializes 3D Gaussian distributions in the canonical space, and we perform occlusion feature query at occluded regions, the aggregated pixel-align feature is extracted to compensate for the missing information. Then we use Gaussian Feature MLP to further process the feature along with the occlusion-aware loss functions to better perceive the occluded area. Extensive experiments both in simulated and real-world occlusions, demonstrate that our method achieves comparable or even superior performance compared to the state-of-the-art method. And we improving training and inference speeds by 250x and 800x, respectively. Our code will be available for research purposes.
PDF

点此查看论文截图

DreamScape: 3D Scene Creation via Gaussian Splatting joint Correlation Modeling

Authors:Xuening Yuan, Hongyu Yang, Yueming Zhao, Di Huang

Recent progress in text-to-3D creation has been propelled by integrating the potent prior of Diffusion Models from text-to-image generation into the 3D domain. Nevertheless, generating 3D scenes characterized by multiple instances and intricate arrangements remains challenging. In this study, we present DreamScape, a method for creating highly consistent 3D scenes solely from textual descriptions, leveraging the strong 3D representation capabilities of Gaussian Splatting and the complex arrangement abilities of large language models (LLMs). Our approach involves a 3D Gaussian Guide ($3{DG^2}$) for scene representation, consisting of semantic primitives (objects) and their spatial transformations and relationships derived directly from text prompts using LLMs. This compositional representation allows for local-to-global optimization of the entire scene. A progressive scale control is tailored during local object generation, ensuring that objects of different sizes and densities adapt to the scene, which addresses training instability issue arising from simple blending in the subsequent global optimization stage. To mitigate potential biases of LLM priors, we model collision relationships between objects at the global level, enhancing physical correctness and overall realism. Additionally, to generate pervasive objects like rain and snow distributed extensively across the scene, we introduce a sparse initialization and densification strategy. Experiments demonstrate that DreamScape offers high usability and controllability, enabling the generation of high-fidelity 3D scenes from only text prompts and achieving state-of-the-art performance compared to other methods.
PDF

点此查看论文截图

LetsGo: Large-Scale Garage Modeling and Rendering via LiDAR-Assisted Gaussian Primitives

Authors:Jiadi Cui, Junming Cao, Yuhui Zhong, Liao Wang, Fuqiang Zhao, Penghao Wang, Yifan Chen, Zhipeng He, Lan Xu, Yujiao Shi, Yingliang Zhang, Jingyi Yu

Large garages are ubiquitous yet intricate scenes in our daily lives, posing challenges characterized by monotonous colors, repetitive patterns, reflective surfaces, and transparent vehicle glass. Conventional Structure from Motion (SfM) methods for camera pose estimation and 3D reconstruction fail in these environments due to poor correspondence construction. To address these challenges, this paper introduces LetsGo, a LiDAR-assisted Gaussian splatting approach for large-scale garage modeling and rendering. We develop a handheld scanner, Polar, equipped with IMU, LiDAR, and a fisheye camera, to facilitate accurate LiDAR and image data scanning. With this Polar device, we present a GarageWorld dataset consisting of five expansive garage scenes with diverse geometric structures and will release the dataset to the community for further research. We demonstrate that the collected LiDAR point cloud by the Polar device enhances a suite of 3D Gaussian splatting algorithms for garage scene modeling and rendering. We also propose a novel depth regularizer for 3D Gaussian splatting algorithm training, effectively eliminating floating artifacts in rendered images, and a lightweight Level of Detail (LOD) Gaussian renderer for real-time viewing on web-based devices. Additionally, we explore a hybrid representation that combines the advantages of traditional mesh in depicting simple geometry and colors (e.g., walls and the ground) with modern 3D Gaussian representations capturing complex details and high-frequency textures. This strategy achieves an optimal balance between memory performance and rendering quality. Experimental results on our dataset, along with ScanNet++ and KITTI-360, demonstrate the superiority of our method in rendering quality and resource efficiency.
PDF Project Page: https://jdtsui.github.io/letsgo/

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录