NeRF/3DGS


2024-04-16 更新

NeuroNCAP: Photorealistic Closed-loop Safety Testing for Autonomous Driving

Authors:William Ljungbergh, Adam Tonderski, Joakim Johnander, Holger Caesar, Kalle Åström, Michael Felsberg, Christoffer Petersson

We present a versatile NeRF-based simulator for testing autonomous driving (AD) software systems, designed with a focus on sensor-realistic closed-loop evaluation and the creation of safety-critical scenarios. The simulator learns from sequences of real-world driving sensor data and enables reconfigurations and renderings of new, unseen scenarios. In this work, we use our simulator to test the responses of AD models to safety-critical scenarios inspired by the European New Car Assessment Programme (Euro NCAP). Our evaluation reveals that, while state-of-the-art end-to-end planners excel in nominal driving scenarios in an open-loop setting, they exhibit critical flaws when navigating our safety-critical scenarios in a closed-loop setting. This highlights the need for advancements in the safety and real-world usability of end-to-end planners. By publicly releasing our simulator and scenarios as an easy-to-run evaluation suite, we invite the research community to explore, refine, and validate their AD models in controlled, yet highly configurable and challenging sensor-realistic environments. Code and instructions can be found at https://github.com/wljungbergh/NeuroNCAP
PDF

点此查看论文截图

GPN: Generative Point-based NeRF

Authors:Haipeng Wang

Scanning real-life scenes with modern registration devices typically gives incomplete point cloud representations, primarily due to the limitations of partial scanning, 3D occlusions, and dynamic light conditions. Recent works on processing incomplete point clouds have always focused on point cloud completion. However, these approaches do not ensure consistency between the completed point cloud and the captured images regarding color and geometry. We propose using Generative Point-based NeRF (GPN) to reconstruct and repair a partial cloud by fully utilizing the scanning images and the corresponding reconstructed cloud. The repaired point cloud can achieve multi-view consistency with the captured images at high spatial resolution. For the finetunes of a single scene, we optimize the global latent condition by incorporating an Auto-Decoder architecture while retaining multi-view consistency. As a result, the generated point clouds are smooth, plausible, and geometrically consistent with the partial scanning images. Extensive experiments on ShapeNet demonstrate that our works achieve competitive performances to the other state-of-the-art point cloud-based neural scene rendering and editing performances.
PDF

点此查看论文截图

OccGaussian: 3D Gaussian Splatting for Occluded Human Rendering

Authors:Jingrui Ye, Zongkai Zhang, Yujiao Jiang, Qingmin Liao, Wenming Yang, Zongqing Lu

Rendering dynamic 3D human from monocular videos is crucial for various applications such as virtual reality and digital entertainment. Most methods assume the people is in an unobstructed scene, while various objects may cause the occlusion of body parts in real-life scenarios. Previous method utilizing NeRF for surface rendering to recover the occluded areas, but it requiring more than one day to train and several seconds to render, failing to meet the requirements of real-time interactive applications. To address these issues, we propose OccGaussian based on 3D Gaussian Splatting, which can be trained within 6 minutes and produces high-quality human renderings up to 160 FPS with occluded input. OccGaussian initializes 3D Gaussian distributions in the canonical space, and we perform occlusion feature query at occluded regions, the aggregated pixel-align feature is extracted to compensate for the missing information. Then we use Gaussian Feature MLP to further process the feature along with the occlusion-aware loss functions to better perceive the occluded area. Extensive experiments both in simulated and real-world occlusions, demonstrate that our method achieves comparable or even superior performance compared to the state-of-the-art method. And we improving training and inference speeds by 250x and 800x, respectively. Our code will be available for research purposes.
PDF 12 April, 2024; originally announced April 2024

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录