2024-04-16 更新
Investigating Neural Machine Translation for Low-Resource Languages: Using Bavarian as a Case Study
Authors:Wan-Hua Her, Udo Kruschwitz
Machine Translation has made impressive progress in recent years offering close to human-level performance on many languages, but studies have primarily focused on high-resource languages with broad online presence and resources. With the help of growing Large Language Models, more and more low-resource languages achieve better results through the presence of other languages. However, studies have shown that not all low-resource languages can benefit from multilingual systems, especially those with insufficient training and evaluation data. In this paper, we revisit state-of-the-art Neural Machine Translation techniques to develop automatic translation systems between German and Bavarian. We investigate conditions of low-resource languages such as data scarcity and parameter sensitivity and focus on refined solutions that combat low-resource difficulties and creative solutions such as harnessing language similarity. Our experiment entails applying Back-translation and Transfer Learning to automatically generate more training data and achieve higher translation performance. We demonstrate noisiness in the data and present our approach to carry out text preprocessing extensively. Evaluation was conducted using combined metrics: BLEU, chrF and TER. Statistical significance results with Bonferroni correction show surprisingly high baseline systems, and that Back-translation leads to significant improvement. Furthermore, we present a qualitative analysis of translation errors and system limitations.
PDF Preprint accepted at the 3rd Annual Meeting of the Special Interest Group on Under-resourced Languages (SIGUL 2024)
点此查看论文截图
Toward a Theory of Tokenization in LLMs
Authors:Nived Rajaraman, Jiantao Jiao, Kannan Ramchandran
While there has been a large body of research attempting to circumvent tokenization for language modeling (Clark et al., 2022; Xue et al., 2022), the current consensus is that it is a necessary initial step for designing state-of-the-art performant language models. In this paper, we investigate tokenization from a theoretical point of view by studying the behavior of transformers on simple data generating processes. When trained on data drawn from certain simple $k^{\text{th}}$-order Markov processes for $k > 1$, transformers exhibit a surprising phenomenon - in the absence of tokenization, they empirically fail to learn the right distribution and predict characters according to a unigram model (Makkuva et al., 2024). With the addition of tokenization, however, we empirically observe that transformers break through this barrier and are able to model the probabilities of sequences drawn from the source near-optimally, achieving small cross-entropy loss. With this observation as starting point, we study the end-to-end cross-entropy loss achieved by transformers with and without tokenization. With the appropriate tokenization, we show that even the simplest unigram models (over tokens) learnt by transformers are able to model the probability of sequences drawn from $k^{\text{th}}$-order Markov sources near optimally. Our analysis provides a justification for the use of tokenization in practice through studying the behavior of transformers on Markovian data.
PDF 58 pages, 10 figures
点此查看论文截图
Look at the Text: Instruction-Tuned Language Models are More Robust Multiple Choice Selectors than You Think
Authors:Xinpeng Wang, Chengzhi Hu, Bolei Ma, Paul Röttger, Barbara Plank
Multiple choice questions (MCQs) are commonly used to evaluate the capabilities of large language models (LLMs). One common way to evaluate the model response is to rank the candidate answers based on the log probability of the first token prediction. An alternative way is to examine the text output. Prior work has shown that first token probabilities lack robustness to changes in MCQ phrasing, and that first token probabilities do not match text answers for instruction-tuned models. Therefore, in this paper, we investigate the robustness of text answers. We show that the text answers are more robust to question perturbations than the first token probabilities, when the first token answers mismatch the text answers. The difference in robustness increases as the mismatch rate becomes greater. As the mismatch reaches over 50\%, the text answer is more robust to option order changes than the debiased first token probabilities using state-of-the-art debiasing methods such as PriDe. Our findings provide further evidence for the benefits of text answer evaluation over first token probability evaluation.
PDF
点此查看论文截图
Mitigating Language-Level Performance Disparity in mPLMs via Teacher Language Selection and Cross-lingual Self-Distillation
Authors:Haozhe Zhao, Zefan Cai, Shuzheng Si, Liang Chen, Yufeng He, Kaikai An, Baobao Chang
Large-scale multilingual Pretrained Language Models (mPLMs) yield impressive performance on cross-language tasks, yet significant performance disparities exist across different languages within the same mPLM. Previous studies endeavored to narrow these disparities by supervise fine-tuning the mPLMs with multilingual data. However, obtaining labeled multilingual data is time-consuming, and fine-tuning mPLM with limited labeled multilingual data merely encapsulates the knowledge specific to the labeled data. Therefore, we introduce ALSACE to leverage the learned knowledge from the well-performing languages to guide under-performing ones within the same mPLM, eliminating the need for additional labeled multilingual data. Experiments show that ALSACE effectively mitigates language-level performance disparity across various mPLMs while showing the competitive performance on different multilingual NLU tasks, ranging from full resource to limited resource settings. The code for our approach is available at https://github.com/pkunlp-icler/ALSACE.
PDF NAACL 2024
点此查看论文截图
LaSagnA: Language-based Segmentation Assistant for Complex Queries
Authors:Cong Wei, Haoxian Tan, Yujie Zhong, Yujiu Yang, Lin Ma
Recent advancements have empowered Large Language Models for Vision (vLLMs) to generate detailed perceptual outcomes, including bounding boxes and masks. Nonetheless, there are two constraints that restrict the further application of these vLLMs: the incapability of handling multiple targets per query and the failure to identify the absence of query objects in the image. In this study, we acknowledge that the main cause of these problems is the insufficient complexity of training queries. Consequently, we define the general sequence format for complex queries. Then we incorporate a semantic segmentation task in the current pipeline to fulfill the requirements of training data. Furthermore, we present three novel strategies to effectively handle the challenges arising from the direct integration of the proposed format. The effectiveness of our model in processing complex queries is validated by the comparable results with conventional methods on both close-set and open-set semantic segmentation datasets. Additionally, we outperform a series of vLLMs in reasoning and referring segmentation, showcasing our model’s remarkable capabilities. We release the code at https://github.com/congvvc/LaSagnA.
PDF
点此查看论文截图
RLHF Deciphered: A Critical Analysis of Reinforcement Learning from Human Feedback for LLMs
Authors:Shreyas Chaudhari, Pranjal Aggarwal, Vishvak Murahari, Tanmay Rajpurohit, Ashwin Kalyan, Karthik Narasimhan, Ameet Deshpande, Bruno Castro da Silva
State-of-the-art large language models (LLMs) have become indispensable tools for various tasks. However, training LLMs to serve as effective assistants for humans requires careful consideration. A promising approach is reinforcement learning from human feedback (RLHF), which leverages human feedback to update the model in accordance with human preferences and mitigate issues like toxicity and hallucinations. Yet, an understanding of RLHF for LLMs is largely entangled with initial design choices that popularized the method and current research focuses on augmenting those choices rather than fundamentally improving the framework. In this paper, we analyze RLHF through the lens of reinforcement learning principles to develop an understanding of its fundamentals, dedicating substantial focus to the core component of RLHF — the reward model. Our study investigates modeling choices, caveats of function approximation, and their implications on RLHF training algorithms, highlighting the underlying assumptions made about the expressivity of reward. Our analysis improves the understanding of the role of reward models and methods for their training, concurrently revealing limitations of the current methodology. We characterize these limitations, including incorrect generalization, model misspecification, and the sparsity of feedback, along with their impact on the performance of a language model. The discussion and analysis are substantiated by a categorical review of current literature, serving as a reference for researchers and practitioners to understand the challenges of RLHF and build upon existing efforts.
PDF
点此查看论文截图
Enhancing Visual Question Answering through Question-Driven Image Captions as Prompts
Authors:Övgü Özdemir, Erdem Akagündüz
Visual question answering (VQA) is known as an AI-complete task as it requires understanding, reasoning, and inferring about the vision and the language content. Over the past few years, numerous neural architectures have been suggested for the VQA problem. However, achieving success in zero-shot VQA remains a challenge due to its requirement for advanced generalization and reasoning skills. This study explores the impact of incorporating image captioning as an intermediary process within the VQA pipeline. Specifically, we explore the efficacy of utilizing image captions instead of images and leveraging large language models (LLMs) to establish a zero-shot setting. Since image captioning is the most crucial step in this process, we compare the impact of state-of-the-art image captioning models on VQA performance across various question types in terms of structure and semantics. We propose a straightforward and efficient question-driven image captioning approach within this pipeline to transfer contextual information into the question-answering (QA) model. This method involves extracting keywords from the question, generating a caption for each image-question pair using the keywords, and incorporating the question-driven caption into the LLM prompt. We evaluate the efficacy of using general-purpose and question-driven image captions in the VQA pipeline. Our study highlights the potential of employing image captions and harnessing the capabilities of LLMs to achieve competitive performance on GQA under the zero-shot setting. Our code is available at \url{https://github.com/ovguyo/captions-in-VQA}.
PDF The paper has been accepted for presentation at CVPR 2024 Workshop on Prompting in Vision
点此查看论文截图
Pre-training Small Base LMs with Fewer Tokens
Authors:Sunny Sanyal, Sujay Sanghavi, Alexandros G. Dimakis
We study the effectiveness of a simple approach to develop a small base language model (LM) starting from an existing large base LM: first inherit a few transformer blocks from the larger LM, and then train this smaller model on a very small subset (0.1\%) of the raw pretraining data of the larger model. We call our simple recipe Inheritune and first demonstrate it for building a small base LM with 1.5B parameters using 1B tokens (and a starting few layers of larger LM of 3B parameters); we do this using a single A6000 GPU for less than half a day. Across 9 diverse evaluation datasets as well as the MMLU benchmark, the resulting model compares favorably to publicly available base models of 1B-2B size, some of which have been trained using 50-1000 times more tokens. We investigate Inheritune in a slightly different setting where we train small LMs utilizing larger LMs and their full pre-training dataset. Here we show that smaller LMs trained utilizing some of the layers of GPT2-medium (355M) and GPT-2-large (770M) can effectively match the val loss of their bigger counterparts when trained from scratch for the same number of training steps on OpenWebText dataset with 9B tokens. We analyze our recipe with extensive experiments and demonstrate it efficacy on diverse settings. Our code is available at https://github.com/sanyalsunny111/LLM-Inheritune.
PDF 15 pages, 6 figures, 10 tables