2024-04-14 更新
TC4D: Trajectory-Conditioned Text-to-4D Generation
Authors:Sherwin Bahmani, Xian Liu, Yifan Wang, Ivan Skorokhodov, Victor Rong, Ziwei Liu, Xihui Liu, Jeong Joon Park, Sergey Tulyakov, Gordon Wetzstein, Andrea Tagliasacchi, David B. Lindell
Recent techniques for text-to-4D generation synthesize dynamic 3D scenes using supervision from pre-trained text-to-video models. However, existing representations for motion, such as deformation models or time-dependent neural representations, are limited in the amount of motion they can generate-they cannot synthesize motion extending far beyond the bounding box used for volume rendering. The lack of a more flexible motion model contributes to the gap in realism between 4D generation methods and recent, near-photorealistic video generation models. Here, we propose TC4D: trajectory-conditioned text-to-4D generation, which factors motion into global and local components. We represent the global motion of a scene’s bounding box using rigid transformation along a trajectory parameterized by a spline. We learn local deformations that conform to the global trajectory using supervision from a text-to-video model. Our approach enables the synthesis of scenes animated along arbitrary trajectories, compositional scene generation, and significant improvements to the realism and amount of generated motion, which we evaluate qualitatively and through a user study. Video results can be viewed on our website: https://sherwinbahmani.github.io/tc4d.
PDF Project Page: https://sherwinbahmani.github.io/tc4d
点此查看论文截图
AnimateZoo: Zero-shot Video Generation of Cross-Species Animation via Subject Alignment
Authors:Yuanfeng Xu, Yuhao Chen, Zhongzhan Huang, Zijian He, Guangrun Wang, Philip Torr, Liang Lin
Recent video editing advancements rely on accurate pose sequences to animate subjects. However, these efforts are not suitable for cross-species animation due to pose misalignment between species (for example, the poses of a cat differs greatly from that of a pig due to differences in body structure). In this paper, we present AnimateZoo, a zero-shot diffusion-based video generator to address this challenging cross-species animation issue, aiming to accurately produce animal animations while preserving the background. The key technique used in our AnimateZoo is subject alignment, which includes two steps. First, we improve appearance feature extraction by integrating a Laplacian detail booster and a prompt-tuning identity extractor. These components are specifically designed to capture essential appearance information, including identity and fine details. Second, we align shape features and address conflicts from differing subjects by introducing a scale-information remover. This ensures accurate cross-species animation. Moreover, we introduce two high-quality animal video datasets featuring a wide variety of species. Trained on these extensive datasets, our model is capable of generating videos characterized by accurate movements, consistent appearance, and high-fidelity frames, without the need for the pre-inference fine-tuning that prior arts required. Extensive experiments showcase the outstanding performance of our method in cross-species action following tasks, demonstrating exceptional shape adaptation capability. The project page is available at https://justinxu0.github.io/AnimateZoo/.
PDF Technical report,15 pages
点此查看论文截图
MagicTime: Time-lapse Video Generation Models as Metamorphic Simulators
Authors:Shenghai Yuan, Jinfa Huang, Yujun Shi, Yongqi Xu, Ruijie Zhu, Bin Lin, Xinhua Cheng, Li Yuan, Jiebo Luo
Recent advances in Text-to-Video generation (T2V) have achieved remarkable success in synthesizing high-quality general videos from textual descriptions. A largely overlooked problem in T2V is that existing models have not adequately encoded physical knowledge of the real world, thus generated videos tend to have limited motion and poor variations. In this paper, we propose \textbf{MagicTime}, a metamorphic time-lapse video generation model, which learns real-world physics knowledge from time-lapse videos and implements metamorphic generation. First, we design a MagicAdapter scheme to decouple spatial and temporal training, encode more physical knowledge from metamorphic videos, and transform pre-trained T2V models to generate metamorphic videos. Second, we introduce a Dynamic Frames Extraction strategy to adapt to metamorphic time-lapse videos, which have a wider variation range and cover dramatic object metamorphic processes, thus embodying more physical knowledge than general videos. Finally, we introduce a Magic Text-Encoder to improve the understanding of metamorphic video prompts. Furthermore, we create a time-lapse video-text dataset called \textbf{ChronoMagic}, specifically curated to unlock the metamorphic video generation ability. Extensive experiments demonstrate the superiority and effectiveness of MagicTime for generating high-quality and dynamic metamorphic videos, suggesting time-lapse video generation is a promising path toward building metamorphic simulators of the physical world.
PDF
点此查看论文截图
Action-conditioned video data improves predictability
Authors:Meenakshi Sarkar, Debasish Ghose
Long-term video generation and prediction remain challenging tasks in computer vision, particularly in partially observable scenarios where cameras are mounted on moving platforms. The interaction between observed image frames and the motion of the recording agent introduces additional complexities. To address these issues, we introduce the Action-Conditioned Video Generation (ACVG) framework, a novel approach that investigates the relationship between actions and generated image frames through a deep dual Generator-Actor architecture. ACVG generates video sequences conditioned on the actions of robots, enabling exploration and analysis of how vision and action mutually influence one another in dynamic environments. We evaluate the framework’s effectiveness on an indoor robot motion dataset which consists of sequences of image frames along with the sequences of actions taken by the robotic agent, conducting a comprehensive empirical study comparing ACVG to other state-of-the-art frameworks along with a detailed ablation study.
PDF