2024-04-08 更新
InstantStyle: Free Lunch towards Style-Preserving in Text-to-Image Generation
Authors:Haofan Wang, Qixun Wang, Xu Bai, Zekui Qin, Anthony Chen
Tuning-free diffusion-based models have demonstrated significant potential in the realm of image personalization and customization. However, despite this notable progress, current models continue to grapple with several complex challenges in producing style-consistent image generation. Firstly, the concept of style is inherently underdetermined, encompassing a multitude of elements such as color, material, atmosphere, design, and structure, among others. Secondly, inversion-based methods are prone to style degradation, often resulting in the loss of fine-grained details. Lastly, adapter-based approaches frequently require meticulous weight tuning for each reference image to achieve a balance between style intensity and text controllability. In this paper, we commence by examining several compelling yet frequently overlooked observations. We then proceed to introduce InstantStyle, a framework designed to address these issues through the implementation of two key strategies: 1) A straightforward mechanism that decouples style and content from reference images within the feature space, predicated on the assumption that features within the same space can be either added to or subtracted from one another. 2) The injection of reference image features exclusively into style-specific blocks, thereby preventing style leaks and eschewing the need for cumbersome weight tuning, which often characterizes more parameter-heavy designs.Our work demonstrates superior visual stylization outcomes, striking an optimal balance between the intensity of style and the controllability of textual elements. Our codes will be available at https://github.com/InstantStyle/InstantStyle.
PDF Technical Report
点此查看论文截图
Visual Autoregressive Modeling: Scalable Image Generation via Next-Scale Prediction
Authors:Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, Liwei Wang
We present Visual AutoRegressive modeling (VAR), a new generation paradigm that redefines the autoregressive learning on images as coarse-to-fine “next-scale prediction” or “next-resolution prediction”, diverging from the standard raster-scan “next-token prediction”. This simple, intuitive methodology allows autoregressive (AR) transformers to learn visual distributions fast and generalize well: VAR, for the first time, makes AR models surpass diffusion transformers in image generation. On ImageNet 256x256 benchmark, VAR significantly improve AR baseline by improving Frechet inception distance (FID) from 18.65 to 1.80, inception score (IS) from 80.4 to 356.4, with around 20x faster inference speed. It is also empirically verified that VAR outperforms the Diffusion Transformer (DiT) in multiple dimensions including image quality, inference speed, data efficiency, and scalability. Scaling up VAR models exhibits clear power-law scaling laws similar to those observed in LLMs, with linear correlation coefficients near -0.998 as solid evidence. VAR further showcases zero-shot generalization ability in downstream tasks including image in-painting, out-painting, and editing. These results suggest VAR has initially emulated the two important properties of LLMs: Scaling Laws and zero-shot task generalization. We have released all models and codes to promote the exploration of AR/VAR models for visual generation and unified learning.
PDF
点此查看论文截图
Diverse and Tailored Image Generation for Zero-shot Multi-label Classification
Authors:Kaixin Zhang, Zhixiang Yuan, Tao Huang
Recently, zero-shot multi-label classification has garnered considerable attention for its capacity to operate predictions on unseen labels without human annotations. Nevertheless, prevailing approaches often use seen classes as imperfect proxies for unseen ones, resulting in suboptimal performance. Drawing inspiration from the success of text-to-image generation models in producing realistic images, we propose an innovative solution: generating synthetic data to construct a training set explicitly tailored for proxyless training on unseen labels. Our approach introduces a novel image generation framework that produces multi-label synthetic images of unseen classes for classifier training. To enhance diversity in the generated images, we leverage a pre-trained large language model to generate diverse prompts. Employing a pre-trained multi-modal CLIP model as a discriminator, we assess whether the generated images accurately represent the target classes. This enables automatic filtering of inaccurately generated images, preserving classifier accuracy. To refine text prompts for more precise and effective multi-label object generation, we introduce a CLIP score-based discriminative loss to fine-tune the text encoder in the diffusion model. Additionally, to enhance visual features on the target task while maintaining the generalization of original features and mitigating catastrophic forgetting resulting from fine-tuning the entire visual encoder, we propose a feature fusion module inspired by transformer attention mechanisms. This module aids in capturing global dependencies between multiple objects more effectively. Extensive experimental results validate the effectiveness of our approach, demonstrating significant improvements over state-of-the-art methods.
PDF
点此查看论文截图
Future-Proofing Class Incremental Learning
Authors:Quentin Jodelet, Xin Liu, Yin Jun Phua, Tsuyoshi Murata
Exemplar-Free Class Incremental Learning is a highly challenging setting where replay memory is unavailable. Methods relying on frozen feature extractors have drawn attention recently in this setting due to their impressive performances and lower computational costs. However, those methods are highly dependent on the data used to train the feature extractor and may struggle when an insufficient amount of classes are available during the first incremental step. To overcome this limitation, we propose to use a pre-trained text-to-image diffusion model in order to generate synthetic images of future classes and use them to train the feature extractor. Experiments on the standard benchmarks CIFAR100 and ImageNet-Subset demonstrate that our proposed method can be used to improve state-of-the-art methods for exemplar-free class incremental learning, especially in the most difficult settings where the first incremental step only contains few classes. Moreover, we show that using synthetic samples of future classes achieves higher performance than using real data from different classes, paving the way for better and less costly pre-training methods for incremental learning.
PDF