图像生成


2024-04-06 更新

Design2Cloth: 3D Cloth Generation from 2D Masks

Authors:Jiali Zheng, Rolandos Alexandros Potamias, Stefanos Zafeiriou

In recent years, there has been a significant shift in the field of digital avatar research, towards modeling, animating and reconstructing clothed human representations, as a key step towards creating realistic avatars. However, current 3D cloth generation methods are garment specific or trained completely on synthetic data, hence lacking fine details and realism. In this work, we make a step towards automatic realistic garment design and propose Design2Cloth, a high fidelity 3D generative model trained on a real world dataset from more than 2000 subject scans. To provide vital contribution to the fashion industry, we developed a user-friendly adversarial model capable of generating diverse and detailed clothes simply by drawing a 2D cloth mask. Under a series of both qualitative and quantitative experiments, we showcase that Design2Cloth outperforms current state-of-the-art cloth generative models by a large margin. In addition to the generative properties of our network, we showcase that the proposed method can be used to achieve high quality reconstructions from single in-the-wild images and 3D scans. Dataset, code and pre-trained model will become publicly available.
PDF Accepted to CVPR 2024, Project page: https://jiali-zheng.github.io/Design2Cloth/

点此查看论文截图

GenN2N: Generative NeRF2NeRF Translation

Authors:Xiangyue Liu, Han Xue, Kunming Luo, Ping Tan, Li Yi

We present GenN2N, a unified NeRF-to-NeRF translation framework for various NeRF translation tasks such as text-driven NeRF editing, colorization, super-resolution, inpainting, etc. Unlike previous methods designed for individual translation tasks with task-specific schemes, GenN2N achieves all these NeRF editing tasks by employing a plug-and-play image-to-image translator to perform editing in the 2D domain and lifting 2D edits into the 3D NeRF space. Since the 3D consistency of 2D edits may not be assured, we propose to model the distribution of the underlying 3D edits through a generative model that can cover all possible edited NeRFs. To model the distribution of 3D edited NeRFs from 2D edited images, we carefully design a VAE-GAN that encodes images while decoding NeRFs. The latent space is trained to align with a Gaussian distribution and the NeRFs are supervised through an adversarial loss on its renderings. To ensure the latent code does not depend on 2D viewpoints but truly reflects the 3D edits, we also regularize the latent code through a contrastive learning scheme. Extensive experiments on various editing tasks show GenN2N, as a universal framework, performs as well or better than task-specific specialists while possessing flexible generative power. More results on our project page: https://xiangyueliu.github.io/GenN2N/
PDF Accepted to CVPR 2024. Project page: https://xiangyueliu.github.io/GenN2N/

点此查看论文截图

LidarDM: Generative LiDAR Simulation in a Generated World

Authors:Vlas Zyrianov, Henry Che, Zhijian Liu, Shenlong Wang

We present LidarDM, a novel LiDAR generative model capable of producing realistic, layout-aware, physically plausible, and temporally coherent LiDAR videos. LidarDM stands out with two unprecedented capabilities in LiDAR generative modeling: (i) LiDAR generation guided by driving scenarios, offering significant potential for autonomous driving simulations, and (ii) 4D LiDAR point cloud generation, enabling the creation of realistic and temporally coherent sequences. At the heart of our model is a novel integrated 4D world generation framework. Specifically, we employ latent diffusion models to generate the 3D scene, combine it with dynamic actors to form the underlying 4D world, and subsequently produce realistic sensory observations within this virtual environment. Our experiments indicate that our approach outperforms competing algorithms in realism, temporal coherency, and layout consistency. We additionally show that LidarDM can be used as a generative world model simulator for training and testing perception models.
PDF

点此查看论文截图

Deep Generative Models through the Lens of the Manifold Hypothesis: A Survey and New Connections

Authors:Gabriel Loaiza-Ganem, Brendan Leigh Ross, Rasa Hosseinzadeh, Anthony L. Caterini, Jesse C. Cresswell

In recent years there has been increased interest in understanding the interplay between deep generative models (DGMs) and the manifold hypothesis. Research in this area focuses on understanding the reasons why commonly-used DGMs succeed or fail at learning distributions supported on unknown low-dimensional manifolds, as well as developing new models explicitly designed to account for manifold-supported data. This manifold lens provides both clarity as to why some DGMs (e.g. diffusion models and some generative adversarial networks) empirically surpass others (e.g. likelihood-based models such as variational autoencoders, normalizing flows, or energy-based models) at sample generation, and guidance for devising more performant DGMs. We carry out the first survey of DGMs viewed through this lens, making two novel contributions along the way. First, we formally establish that numerical instability of high-dimensional likelihoods is unavoidable when modelling low-dimensional data. We then show that DGMs on learned representations of autoencoders can be interpreted as approximately minimizing Wasserstein distance: this result, which applies to latent diffusion models, helps justify their outstanding empirical results. The manifold lens provides a rich perspective from which to understand DGMs, which we aim to make more accessible and widespread.
PDF

点此查看论文截图

Diverse and Tailored Image Generation for Zero-shot Multi-label Classification

Authors:Kaixin Zhang, Zhixiang Yuan, Tao Huang

Recently, zero-shot multi-label classification has garnered considerable attention for its capacity to operate predictions on unseen labels without human annotations. Nevertheless, prevailing approaches often use seen classes as imperfect proxies for unseen ones, resulting in suboptimal performance. Drawing inspiration from the success of text-to-image generation models in producing realistic images, we propose an innovative solution: generating synthetic data to construct a training set explicitly tailored for proxyless training on unseen labels. Our approach introduces a novel image generation framework that produces multi-label synthetic images of unseen classes for classifier training. To enhance diversity in the generated images, we leverage a pre-trained large language model to generate diverse prompts. Employing a pre-trained multi-modal CLIP model as a discriminator, we assess whether the generated images accurately represent the target classes. This enables automatic filtering of inaccurately generated images, preserving classifier accuracy. To refine text prompts for more precise and effective multi-label object generation, we introduce a CLIP score-based discriminative loss to fine-tune the text encoder in the diffusion model. Additionally, to enhance visual features on the target task while maintaining the generalization of original features and mitigating catastrophic forgetting resulting from fine-tuning the entire visual encoder, we propose a feature fusion module inspired by transformer attention mechanisms. This module aids in capturing global dependencies between multiple objects more effectively. Extensive experimental results validate the effectiveness of our approach, demonstrating significant improvements over state-of-the-art methods.
PDF

点此查看论文截图

DreamWalk: Style Space Exploration using Diffusion Guidance

Authors:Michelle Shu, Charles Herrmann, Richard Strong Bowen, Forrester Cole, Ramin Zabih

Text-conditioned diffusion models can generate impressive images, but fall short when it comes to fine-grained control. Unlike direct-editing tools like Photoshop, text conditioned models require the artist to perform “prompt engineering,” constructing special text sentences to control the style or amount of a particular subject present in the output image. Our goal is to provide fine-grained control over the style and substance specified by the prompt, for example to adjust the intensity of styles in different regions of the image (Figure 1). Our approach is to decompose the text prompt into conceptual elements, and apply a separate guidance term for each element in a single diffusion process. We introduce guidance scale functions to control when in the diffusion process and \emph{where} in the image to intervene. Since the method is based solely on adjusting diffusion guidance, it does not require fine-tuning or manipulating the internal layers of the diffusion model’s neural network, and can be used in conjunction with LoRA- or DreamBooth-trained models (Figure2). Project page: https://mshu1.github.io/dreamwalk.github.io/
PDF

点此查看论文截图

HandDiff: 3D Hand Pose Estimation with Diffusion on Image-Point Cloud

Authors:Wencan Cheng, Hao Tang, Luc Van Gool, Jong Hwan Ko

Extracting keypoint locations from input hand frames, known as 3D hand pose estimation, is a critical task in various human-computer interaction applications. Essentially, the 3D hand pose estimation can be regarded as a 3D point subset generative problem conditioned on input frames. Thanks to the recent significant progress on diffusion-based generative models, hand pose estimation can also benefit from the diffusion model to estimate keypoint locations with high quality. However, directly deploying the existing diffusion models to solve hand pose estimation is non-trivial, since they cannot achieve the complex permutation mapping and precise localization. Based on this motivation, this paper proposes HandDiff, a diffusion-based hand pose estimation model that iteratively denoises accurate hand pose conditioned on hand-shaped image-point clouds. In order to recover keypoint permutation and accurate location, we further introduce joint-wise condition and local detail condition. Experimental results demonstrate that the proposed HandDiff significantly outperforms the existing approaches on four challenging hand pose benchmark datasets. Codes and pre-trained models are publicly available at https://github.com/cwc1260/HandDiff.
PDF Accepted as a conference paper to the Conference on Computer Vision and Pattern Recognition (2024)

点此查看论文截图

Future-Proofing Class Incremental Learning

Authors:Quentin Jodelet, Xin Liu, Yin Jun Phua, Tsuyoshi Murata

Exemplar-Free Class Incremental Learning is a highly challenging setting where replay memory is unavailable. Methods relying on frozen feature extractors have drawn attention recently in this setting due to their impressive performances and lower computational costs. However, those methods are highly dependent on the data used to train the feature extractor and may struggle when an insufficient amount of classes are available during the first incremental step. To overcome this limitation, we propose to use a pre-trained text-to-image diffusion model in order to generate synthetic images of future classes and use them to train the feature extractor. Experiments on the standard benchmarks CIFAR100 and ImageNet-Subset demonstrate that our proposed method can be used to improve state-of-the-art methods for exemplar-free class incremental learning, especially in the most difficult settings where the first incremental step only contains few classes. Moreover, we show that using synthetic samples of future classes achieves higher performance than using real data from different classes, paving the way for better and less costly pre-training methods for incremental learning.
PDF

点此查看论文截图

Multi Positive Contrastive Learning with Pose-Consistent Generated Images

Authors:Sho Inayoshi, Aji Resindra Widya, Satoshi Ozaki, Junji Otsuka, Takeshi Ohashi

Model pre-training has become essential in various recognition tasks. Meanwhile, with the remarkable advancements in image generation models, pre-training methods utilizing generated images have also emerged given their ability to produce unlimited training data. However, while existing methods utilizing generated images excel in classification, they fall short in more practical tasks, such as human pose estimation. In this paper, we have experimentally demonstrated it and propose the generation of visually distinct images with identical human poses. We then propose a novel multi-positive contrastive learning, which optimally utilize the previously generated images to learn structural features of the human body. We term the entire learning pipeline as GenPoCCL. Despite using only less than 1% amount of data compared to current state-of-the-art method, GenPoCCL captures structural features of the human body more effectively, surpassing existing methods in a variety of human-centric perception tasks.
PDF

点此查看论文截图

AIGIQA-20K: A Large Database for AI-Generated Image Quality Assessment

Authors:Chunyi Li, Tengchuan Kou, Yixuan Gao, Yuqin Cao, Wei Sun, Zicheng Zhang, Yingjie Zhou, Zhichao Zhang, Weixia Zhang, Haoning Wu, Xiaohong Liu, Xiongkuo Min, Guangtao Zhai

With the rapid advancements in AI-Generated Content (AIGC), AI-Generated Images (AIGIs) have been widely applied in entertainment, education, and social media. However, due to the significant variance in quality among different AIGIs, there is an urgent need for models that consistently match human subjective ratings. To address this issue, we organized a challenge towards AIGC quality assessment on NTIRE 2024 that extensively considers 15 popular generative models, utilizing dynamic hyper-parameters (including classifier-free guidance, iteration epochs, and output image resolution), and gather subjective scores that consider perceptual quality and text-to-image alignment altogether comprehensively involving 21 subjects. This approach culminates in the creation of the largest fine-grained AIGI subjective quality database to date with 20,000 AIGIs and 420,000 subjective ratings, known as AIGIQA-20K. Furthermore, we conduct benchmark experiments on this database to assess the correspondence between 16 mainstream AIGI quality models and human perception. We anticipate that this large-scale quality database will inspire robust quality indicators for AIGIs and propel the evolution of AIGC for vision. The database is released on https://www.modelscope.cn/datasets/lcysyzxdxc/AIGCQA-30K-Image.
PDF

点此查看论文截图

PointInfinity: Resolution-Invariant Point Diffusion Models

Authors:Zixuan Huang, Justin Johnson, Shoubhik Debnath, James M. Rehg, Chao-Yuan Wu

We present PointInfinity, an efficient family of point cloud diffusion models. Our core idea is to use a transformer-based architecture with a fixed-size, resolution-invariant latent representation. This enables efficient training with low-resolution point clouds, while allowing high-resolution point clouds to be generated during inference. More importantly, we show that scaling the test-time resolution beyond the training resolution improves the fidelity of generated point clouds and surfaces. We analyze this phenomenon and draw a link to classifier-free guidance commonly used in diffusion models, demonstrating that both allow trading off fidelity and variability during inference. Experiments on CO3D show that PointInfinity can efficiently generate high-resolution point clouds (up to 131k points, 31 times more than Point-E) with state-of-the-art quality.
PDF Accepted to CVPR 2024, project website at https://zixuanh.com/projects/pointinfinity

点此查看论文截图

DiffBody: Human Body Restoration by Imagining with Generative Diffusion Prior

Authors:Yiming Zhang, Zhe Wang, Xinjie Li, Yunchen Yuan, Chengsong Zhang, Xiao Sun, Zhihang Zhong, Jian Wang

Human body restoration plays a vital role in various applications related to the human body. Despite recent advances in general image restoration using generative models, their performance in human body restoration remains mediocre, often resulting in foreground and background blending, over-smoothing surface textures, missing accessories, and distorted limbs. Addressing these challenges, we propose a novel approach by constructing a human body-aware diffusion model that leverages domain-specific knowledge to enhance performance. Specifically, we employ a pretrained body attention module to guide the diffusion model’s focus on the foreground, addressing issues caused by blending between the subject and background. We also demonstrate the value of revisiting the language modality of the diffusion model in restoration tasks by seamlessly incorporating text prompt to improve the quality of surface texture and additional clothing and accessories details. Additionally, we introduce a diffusion sampler tailored for fine-grained human body parts, utilizing local semantic information to rectify limb distortions. Lastly, we collect a comprehensive dataset for benchmarking and advancing the field of human body restoration. Extensive experimental validation showcases the superiority of our approach, both quantitatively and qualitatively, over existing methods.
PDF

点此查看论文截图

CoMat: Aligning Text-to-Image Diffusion Model with Image-to-Text Concept Matching

Authors:Dongzhi Jiang, Guanglu Song, Xiaoshi Wu, Renrui Zhang, Dazhong Shen, Zhuofan Zong, Yu Liu, Hongsheng Li

Diffusion models have demonstrated great success in the field of text-to-image generation. However, alleviating the misalignment between the text prompts and images is still challenging. The root reason behind the misalignment has not been extensively investigated. We observe that the misalignment is caused by inadequate token attention activation. We further attribute this phenomenon to the diffusion model’s insufficient condition utilization, which is caused by its training paradigm. To address the issue, we propose CoMat, an end-to-end diffusion model fine-tuning strategy with an image-to-text concept matching mechanism. We leverage an image captioning model to measure image-to-text alignment and guide the diffusion model to revisit ignored tokens. A novel attribute concentration module is also proposed to address the attribute binding problem. Without any image or human preference data, we use only 20K text prompts to fine-tune SDXL to obtain CoMat-SDXL. Extensive experiments show that CoMat-SDXL significantly outperforms the baseline model SDXL in two text-to-image alignment benchmarks and achieves start-of-the-art performance.
PDF Project Page: https://caraj7.github.io/comat

点此查看论文截图

MVD-Fusion: Single-view 3D via Depth-consistent Multi-view Generation

Authors:Hanzhe Hu, Zhizhuo Zhou, Varun Jampani, Shubham Tulsiani

We present MVD-Fusion: a method for single-view 3D inference via generative modeling of multi-view-consistent RGB-D images. While recent methods pursuing 3D inference advocate learning novel-view generative models, these generations are not 3D-consistent and require a distillation process to generate a 3D output. We instead cast the task of 3D inference as directly generating mutually-consistent multiple views and build on the insight that additionally inferring depth can provide a mechanism for enforcing this consistency. Specifically, we train a denoising diffusion model to generate multi-view RGB-D images given a single RGB input image and leverage the (intermediate noisy) depth estimates to obtain reprojection-based conditioning to maintain multi-view consistency. We train our model using large-scale synthetic dataset Obajverse as well as the real-world CO3D dataset comprising of generic camera viewpoints. We demonstrate that our approach can yield more accurate synthesis compared to recent state-of-the-art, including distillation-based 3D inference and prior multi-view generation methods. We also evaluate the geometry induced by our multi-view depth prediction and find that it yields a more accurate representation than other direct 3D inference approaches.
PDF Project page: https://mvd-fusion.github.io/

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录