2024-04-06 更新
One Noise to Rule Them All: Multi-View Adversarial Attacks with Universal Perturbation
Authors:Mehmet Ergezer, Phat Duong, Christian Green, Tommy Nguyen, Abdurrahman Zeybey
This paper presents a novel universal perturbation method for generating robust multi-view adversarial examples in 3D object recognition. Unlike conventional attacks limited to single views, our approach operates on multiple 2D images, offering a practical and scalable solution for enhancing model scalability and robustness. This generalizable method bridges the gap between 2D perturbations and 3D-like attack capabilities, making it suitable for real-world applications. Existing adversarial attacks may become ineffective when images undergo transformations like changes in lighting, camera position, or natural deformations. We address this challenge by crafting a single universal noise perturbation applicable to various object views. Experiments on diverse rendered 3D objects demonstrate the effectiveness of our approach. The universal perturbation successfully identified a single adversarial noise for each given set of 3D object renders from multiple poses and viewpoints. Compared to single-view attacks, our universal attacks lower classification confidence across multiple viewing angles, especially at low noise levels. A sample implementation is made available at https://github.com/memoatwit/UniversalPerturbation.
PDF 6 pages, 4 figures, presented at ICAIA, Springer to publish under Algorithms for Intelligent Systems
点此查看论文截图
Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks
Authors:Lei Zhang, Yuhang Zhou, Yi Yang, Xinbo Gao
Despite providing high-performance solutions for computer vision tasks, the deep neural network (DNN) model has been proved to be extremely vulnerable to adversarial attacks. Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked. Besides, commonly used adaptive learning and fine-tuning technique is unsuitable for adversarial defense since it is essentially a zero-shot problem when deployed. Thus, to tackle this challenge, we propose an attack-agnostic defense method named Meta Invariance Defense (MID). Specifically, various combinations of adversarial attacks are randomly sampled from a manually constructed Attacker Pool to constitute different defense tasks against unknown attacks, in which a student encoder is supervised by multi-consistency distillation to learn the attack-invariant features via a meta principle. The proposed MID has two merits: 1) Full distillation from pixel-, feature- and prediction-level between benign and adversarial samples facilitates the discovery of attack-invariance. 2) The model simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration. Theoretical and empirical studies on numerous benchmarks such as ImageNet verify the generalizable robustness and superiority of MID under various attacks.
PDF Accepted by IEEE TPAMI in 2024