2024-04-03 更新
TexVocab: Texture Vocabulary-conditioned Human Avatars
Authors:Yuxiao Liu, Zhe Li, Yebin Liu, Haoqian Wang
To adequately utilize the available image evidence in multi-view video-based avatar modeling, we propose TexVocab, a novel avatar representation that constructs a texture vocabulary and associates body poses with texture maps for animation. Given multi-view RGB videos, our method initially back-projects all the available images in the training videos to the posed SMPL surface, producing texture maps in the SMPL UV domain. Then we construct pairs of human poses and texture maps to establish a texture vocabulary for encoding dynamic human appearances under various poses. Unlike the commonly used joint-wise manner, we further design a body-part-wise encoding strategy to learn the structural effects of the kinematic chain. Given a driving pose, we query the pose feature hierarchically by decomposing the pose vector into several body parts and interpolating the texture features for synthesizing fine-grained human dynamics. Overall, our method is able to create animatable human avatars with detailed and dynamic appearances from RGB videos, and the experiments show that our method outperforms state-of-the-art approaches. The project page can be found at https://texvocab.github.io/.
PDF
点此查看论文截图
HAHA: Highly Articulated Gaussian Human Avatars with Textured Mesh Prior
Authors:David Svitov, Pietro Morerio, Lourdes Agapito, Alessio Del Bue
We present HAHA - a novel approach for animatable human avatar generation from monocular input videos. The proposed method relies on learning the trade-off between the use of Gaussian splatting and a textured mesh for efficient and high fidelity rendering. We demonstrate its efficiency to animate and render full-body human avatars controlled via the SMPL-X parametric model. Our model learns to apply Gaussian splatting only in areas of the SMPL-X mesh where it is necessary, like hair and out-of-mesh clothing. This results in a minimal number of Gaussians being used to represent the full avatar, and reduced rendering artifacts. This allows us to handle the animation of small body parts such as fingers that are traditionally disregarded. We demonstrate the effectiveness of our approach on two open datasets: SnapshotPeople and X-Humans. Our method demonstrates on par reconstruction quality to the state-of-the-art on SnapshotPeople, while using less than a third of Gaussians. HAHA outperforms previous state-of-the-art on novel poses from X-Humans both quantitatively and qualitatively.
PDF
点此查看论文截图
MagicMirror: Fast and High-Quality Avatar Generation with a Constrained Search Space
Authors:Armand Comas-Massagué, Di Qiu, Menglei Chai, Marcel Bühler, Amit Raj, Ruiqi Gao, Qiangeng Xu, Mark Matthews, Paulo Gotardo, Octavia Camps, Sergio Orts-Escolano, Thabo Beeler
We introduce a novel framework for 3D human avatar generation and personalization, leveraging text prompts to enhance user engagement and customization. Central to our approach are key innovations aimed at overcoming the challenges in photo-realistic avatar synthesis. Firstly, we utilize a conditional Neural Radiance Fields (NeRF) model, trained on a large-scale unannotated multi-view dataset, to create a versatile initial solution space that accelerates and diversifies avatar generation. Secondly, we develop a geometric prior, leveraging the capabilities of Text-to-Image Diffusion Models, to ensure superior view invariance and enable direct optimization of avatar geometry. These foundational ideas are complemented by our optimization pipeline built on Variational Score Distillation (VSD), which mitigates texture loss and over-saturation issues. As supported by our extensive experiments, these strategies collectively enable the creation of custom avatars with unparalleled visual quality and better adherence to input text prompts. You can find more results and videos in our website: https://syntec-research.github.io/MagicMirror
PDF
点此查看论文截图
Efficient 3D Implicit Head Avatar with Mesh-anchored Hash Table Blendshapes
Authors:Ziqian Bai, Feitong Tan, Sean Fanello, Rohit Pandey, Mingsong Dou, Shichen Liu, Ping Tan, Yinda Zhang
3D head avatars built with neural implicit volumetric representations have achieved unprecedented levels of photorealism. However, the computational cost of these methods remains a significant barrier to their widespread adoption, particularly in real-time applications such as virtual reality and teleconferencing. While attempts have been made to develop fast neural rendering approaches for static scenes, these methods cannot be simply employed to support realistic facial expressions, such as in the case of a dynamic facial performance. To address these challenges, we propose a novel fast 3D neural implicit head avatar model that achieves real-time rendering while maintaining fine-grained controllability and high rendering quality. Our key idea lies in the introduction of local hash table blendshapes, which are learned and attached to the vertices of an underlying face parametric model. These per-vertex hash-tables are linearly merged with weights predicted via a CNN, resulting in expression dependent embeddings. Our novel representation enables efficient density and color predictions using a lightweight MLP, which is further accelerated by a hierarchical nearest neighbor search method. Extensive experiments show that our approach runs in real-time while achieving comparable rendering quality to state-of-the-arts and decent results on challenging expressions.
PDF In CVPR2024. Project page: https://augmentedperception.github.io/monoavatar-plus
点此查看论文截图
GeneAvatar: Generic Expression-Aware Volumetric Head Avatar Editing from a Single Image
Authors:Chong Bao, Yinda Zhang, Yuan Li, Xiyu Zhang, Bangbang Yang, Hujun Bao, Marc Pollefeys, Guofeng Zhang, Zhaopeng Cui
Recently, we have witnessed the explosive growth of various volumetric representations in modeling animatable head avatars. However, due to the diversity of frameworks, there is no practical method to support high-level applications like 3D head avatar editing across different representations. In this paper, we propose a generic avatar editing approach that can be universally applied to various 3DMM driving volumetric head avatars. To achieve this goal, we design a novel expression-aware modification generative model, which enables lift 2D editing from a single image to a consistent 3D modification field. To ensure the effectiveness of the generative modification process, we develop several techniques, including an expression-dependent modification distillation scheme to draw knowledge from the large-scale head avatar model and 2D facial texture editing tools, implicit latent space guidance to enhance model convergence, and a segmentation-based loss reweight strategy for fine-grained texture inversion. Extensive experiments demonstrate that our method delivers high-quality and consistent results across multiple expression and viewpoints. Project page: https://zju3dv.github.io/geneavatar/
PDF Accepted to CVPR 2024. Project page: https://zju3dv.github.io/geneavatar/