2024-04-03 更新
Image-to-Image Matching via Foundation Models: A New Perspective for Open-Vocabulary Semantic Segmentation
Authors:Yuan Wang, Rui Sun, Naisong Luo, Yuwen Pan, Tianzhu Zhang
Open-vocabulary semantic segmentation (OVS) aims to segment images of arbitrary categories specified by class labels or captions. However, most previous best-performing methods, whether pixel grouping methods or region recognition methods, suffer from false matches between image features and category labels. We attribute this to the natural gap between the textual features and visual features. In this work, we rethink how to mitigate false matches from the perspective of image-to-image matching and propose a novel relation-aware intra-modal matching (RIM) framework for OVS based on visual foundation models. RIM achieves robust region classification by firstly constructing diverse image-modal reference features and then matching them with region features based on relation-aware ranking distribution. The proposed RIM enjoys several merits. First, the intra-modal reference features are better aligned, circumventing potential ambiguities that may arise in cross-modal matching. Second, the ranking-based matching process harnesses the structure information implicit in the inter-class relationships, making it more robust than comparing individually. Extensive experiments on three benchmarks demonstrate that RIM outperforms previous state-of-the-art methods by large margins, obtaining a lead of more than 10% in mIoU on PASCAL VOC benchmark.
PDF Accepted to CVPR2024
点此查看论文截图
DHR: Dual Features-Driven Hierarchical Rebalancing in Inter- and Intra-Class Regions for Weakly-Supervised Semantic Segmentation
Authors:Sanghyun Jo, Fei Pan, In-Jae Yu, Kyungsu Kim
Weakly-supervised semantic segmentation (WSS) ensures high-quality segmentation with limited data and excels when employed as input seed masks for large-scale vision models such as Segment Anything. However, WSS faces challenges related to minor classes since those are overlooked in images with adjacent multiple classes, a limitation originating from the overfitting of traditional expansion methods like Random Walk. We first address this by employing unsupervised and weakly-supervised feature maps instead of conventional methodologies, allowing for hierarchical mask enhancement. This method distinctly categorizes higher-level classes and subsequently separates their associated lower-level classes, ensuring all classes are correctly restored in the mask without losing minor ones. Our approach, validated through extensive experimentation, significantly improves WSS across five benchmarks (VOC: 79.8\%, COCO: 53.9\%, Context: 49.0\%, ADE: 32.9\%, Stuff: 37.4\%), reducing the gap with fully supervised methods by over 84\% on the VOC validation set. Code is available at https://github.com/shjo-april/DHR.
PDF
点此查看论文截图
DMSSN: Distilled Mixed Spectral-Spatial Network for Hyperspectral Salient Object Detection
Authors:Haolin Qin, Tingfa Xu, Peifu Liu, Jingxuan Xu, Jianan Li
Hyperspectral salient object detection (HSOD) has exhibited remarkable promise across various applications, particularly in intricate scenarios where conventional RGB-based approaches fall short. Despite the considerable progress in HSOD method advancements, two critical challenges require immediate attention. Firstly, existing hyperspectral data dimension reduction techniques incur a loss of spectral information, which adversely affects detection accuracy. Secondly, previous methods insufficiently harness the inherent distinctive attributes of hyperspectral images (HSIs) during the feature extraction process. To address these challenges, we propose a novel approach termed the Distilled Mixed Spectral-Spatial Network (DMSSN), comprising a Distilled Spectral Encoding process and a Mixed Spectral-Spatial Transformer (MSST) feature extraction network. The encoding process utilizes knowledge distillation to construct a lightweight autoencoder for dimension reduction, striking a balance between robust encoding capabilities and low computational costs. The MSST extracts spectral-spatial features through multiple attention head groups, collaboratively enhancing its resistance to intricate scenarios. Moreover, we have created a large-scale HSOD dataset, HSOD-BIT, to tackle the issue of data scarcity in this field and meet the fundamental data requirements of deep network training. Extensive experiments demonstrate that our proposed DMSSN achieves state-of-the-art performance on multiple datasets. We will soon make the code and dataset publicly available on https://github.com/anonymous0519/HSOD-BIT.
PDF
点此查看论文截图
Training-Free Semantic Segmentation via LLM-Supervision
Authors:Wenfang Sun, Yingjun Du, Gaowen Liu, Ramana Kompella, Cees G. M. Snoek
Recent advancements in open vocabulary models, like CLIP, have notably advanced zero-shot classification and segmentation by utilizing natural language for class-specific embeddings. However, most research has focused on improving model accuracy through prompt engineering, prompt learning, or fine-tuning with limited labeled data, thereby overlooking the importance of refining the class descriptors. This paper introduces a new approach to text-supervised semantic segmentation using supervision by a large language model (LLM) that does not require extra training. Our method starts from an LLM, like GPT-3, to generate a detailed set of subclasses for more accurate class representation. We then employ an advanced text-supervised semantic segmentation model to apply the generated subclasses as target labels, resulting in diverse segmentation results tailored to each subclass’s unique characteristics. Additionally, we propose an assembly that merges the segmentation maps from the various subclass descriptors to ensure a more comprehensive representation of the different aspects in the test images. Through comprehensive experiments on three standard benchmarks, our method outperforms traditional text-supervised semantic segmentation methods by a marked margin.
PDF 22 pages,10 figures, conference
点此查看论文截图
Teeth-SEG: An Efficient Instance Segmentation Framework for Orthodontic Treatment based on Anthropic Prior Knowledge
Authors:Bo Zou, Shaofeng Wang, Hao Liu, Gaoyue Sun, Yajie Wang, FeiFei Zuo, Chengbin Quan, Youjian Zhao
Teeth localization, segmentation, and labeling in 2D images have great potential in modern dentistry to enhance dental diagnostics, treatment planning, and population-based studies on oral health. However, general instance segmentation frameworks are incompetent due to 1) the subtle differences between some teeth’ shapes (e.g., maxillary first premolar and second premolar), 2) the teeth’s position and shape variation across subjects, and 3) the presence of abnormalities in the dentition (e.g., caries and edentulism). To address these problems, we propose a ViT-based framework named TeethSEG, which consists of stacked Multi-Scale Aggregation (MSA) blocks and an Anthropic Prior Knowledge (APK) layer. Specifically, to compose the two modules, we design 1) a unique permutation-based upscaler to ensure high efficiency while establishing clear segmentation boundaries with 2) multi-head self/cross-gating layers to emphasize particular semantics meanwhile maintaining the divergence between token embeddings. Besides, we collect 3) the first open-sourced intraoral image dataset IO150K, which comprises over 150k intraoral photos, and all photos are annotated by orthodontists using a human-machine hybrid algorithm. Experiments on IO150K demonstrate that our TeethSEG outperforms the state-of-the-art segmentation models on dental image segmentation.
PDF This paper has been accepted by CVPR 2024
点此查看论文截图
Modality Translation for Object Detection Adaptation Without Forgetting Prior Knowledge
Authors:Heitor Rapela Medeiros, Masih Aminbeidokhti, Fidel Guerrero Pena, David Latortue, Eric Granger, Marco Pedersoli
A common practice in deep learning consists of training large neural networks on massive datasets to perform accurately for different domains and tasks. While this methodology may work well in numerous application areas, it only applies across modalities due to a larger distribution shift in data captured using different sensors. This paper focuses on the problem of adapting a large object detection model to one or multiple modalities while being efficient. To do so, we propose ModTr as an alternative to the common approach of fine-tuning large models. ModTr consists of adapting the input with a small transformation network trained to minimize the detection loss directly. The original model can therefore work on the translated inputs without any further change or fine-tuning to its parameters. Experimental results on translating from IR to RGB images on two well-known datasets show that this simple ModTr approach provides detectors that can perform comparably or better than the standard fine-tuning without forgetting the original knowledge. This opens the doors to a more flexible and efficient service-based detection pipeline in which, instead of using a different detector for each modality, a unique and unaltered server is constantly running, where multiple modalities with the corresponding translations can query it. Code: https://github.com/heitorrapela/ModTr.
PDF
点此查看论文截图
LR-FPN: Enhancing Remote Sensing Object Detection with Location Refined Feature Pyramid Network
Authors:Hanqian Li, Ruinan Zhang, Ye Pan, Junchi Ren, Fei Shen
Remote sensing target detection aims to identify and locate critical targets within remote sensing images, finding extensive applications in agriculture and urban planning. Feature pyramid networks (FPNs) are commonly used to extract multi-scale features. However, existing FPNs often overlook extracting low-level positional information and fine-grained context interaction. To address this, we propose a novel location refined feature pyramid network (LR-FPN) to enhance the extraction of shallow positional information and facilitate fine-grained context interaction. The LR-FPN consists of two primary modules: the shallow position information extraction module (SPIEM) and the contextual interaction module (CIM). Specifically, SPIEM first maximizes the retention of solid location information of the target by simultaneously extracting positional and saliency information from the low-level feature map. Subsequently, CIM injects this robust location information into different layers of the original FPN through spatial and channel interaction, explicitly enhancing the object area. Moreover, in spatial interaction, we introduce a simple local and non-local interaction strategy to learn and retain the saliency information of the object. Lastly, the LR-FPN can be readily integrated into common object detection frameworks to improve performance significantly. Extensive experiments on two large-scale remote sensing datasets (i.e., DOTAV1.0 and HRSC2016) demonstrate that the proposed LR-FPN is superior to state-of-the-art object detection approaches. Our code and models will be publicly available.
PDF
点此查看论文截图
Samba: Semantic Segmentation of Remotely Sensed Images with State Space Model
Authors:Qinfeng Zhu, Yuanzhi Cai, Yuan Fang, Yihan Yang, Cheng Chen, Lei Fan, Anh Nguyen
High-resolution remotely sensed images poses a challenge for commonly used semantic segmentation methods such as Convolutional Neural Network (CNN) and Vision Transformer (ViT). CNN-based methods struggle with handling such high-resolution images due to their limited receptive field, while ViT faces challenges to handle long sequences. Inspired by Mamba, which adopts a State Space Model (SSM) to efficiently capture global semantic information, we propose a semantic segmentation framework for high-resolution remotely sensed images, named Samba. Samba utilizes an encoder-decoder architecture, with Samba blocks serving as the encoder for efficient multi-level semantic information extraction, and UperNet functioning as the decoder. We evaluate Samba on the LoveDA dataset, comparing its performance against top-performing CNN and ViT methods. The results reveal that Samba achieved unparalleled performance on LoveDA. This represents that the proposed Samba is an effective application of the SSM in semantic segmentation of remotely sensed images, setting a new benchmark in performance for Mamba-based techniques in this specific application. The source code and baseline implementations are available at https://github.com/zhuqinfeng1999/Samba.
PDF
点此查看论文截图
Disentangled Pre-training for Human-Object Interaction Detection
Authors:Zhuolong Li, Xingao Li, Changxing Ding, Xiangmin Xu
Detecting human-object interaction (HOI) has long been limited by the amount of supervised data available. Recent approaches address this issue by pre-training according to pseudo-labels, which align object regions with HOI triplets parsed from image captions. However, pseudo-labeling is tricky and noisy, making HOI pre-training a complex process. Therefore, we propose an efficient disentangled pre-training method for HOI detection (DP-HOI) to address this problem. First, DP-HOI utilizes object detection and action recognition datasets to pre-train the detection and interaction decoder layers, respectively. Then, we arrange these decoder layers so that the pre-training architecture is consistent with the downstream HOI detection task. This facilitates efficient knowledge transfer. Specifically, the detection decoder identifies reliable human instances in each action recognition dataset image, generates one corresponding query, and feeds it into the interaction decoder for verb classification. Next, we combine the human instance verb predictions in the same image and impose image-level supervision. The DP-HOI structure can be easily adapted to the HOI detection task, enabling effective model parameter initialization. Therefore, it significantly enhances the performance of existing HOI detection models on a broad range of rare categories. The code and pre-trained weight are available at https://github.com/xingaoli/DP-HOI.
PDF Accepted by CVPR2024
点此查看论文截图
Scene Adaptive Sparse Transformer for Event-based Object Detection
Authors:Yansong Peng, Hebei Li, Yueyi Zhang, Xiaoyan Sun, Feng Wu
While recent Transformer-based approaches have shown impressive performances on event-based object detection tasks, their high computational costs still diminish the low power consumption advantage of event cameras. Image-based works attempt to reduce these costs by introducing sparse Transformers. However, they display inadequate sparsity and adaptability when applied to event-based object detection, since these approaches cannot balance the fine granularity of token-level sparsification and the efficiency of window-based Transformers, leading to reduced performance and efficiency. Furthermore, they lack scene-specific sparsity optimization, resulting in information loss and a lower recall rate. To overcome these limitations, we propose the Scene Adaptive Sparse Transformer (SAST). SAST enables window-token co-sparsification, significantly enhancing fault tolerance and reducing computational overhead. Leveraging the innovative scoring and selection modules, along with the Masked Sparse Window Self-Attention, SAST showcases remarkable scene-aware adaptability: It focuses only on important objects and dynamically optimizes sparsity level according to scene complexity, maintaining a remarkable balance between performance and computational cost. The evaluation results show that SAST outperforms all other dense and sparse networks in both performance and efficiency on two large-scale event-based object detection datasets (1Mpx and Gen1). Code: https://github.com/Peterande/SAST
PDF
点此查看论文截图
Improving Bird’s Eye View Semantic Segmentation by Task Decomposition
Authors:Tianhao Zhao, Yongcan Chen, Yu Wu, Tianyang Liu, Bo Du, Peilun Xiao, Shi Qiu, Hongda Yang, Guozhen Li, Yi Yang, Yutian Lin
Semantic segmentation in bird’s eye view (BEV) plays a crucial role in autonomous driving. Previous methods usually follow an end-to-end pipeline, directly predicting the BEV segmentation map from monocular RGB inputs. However, the challenge arises when the RGB inputs and BEV targets from distinct perspectives, making the direct point-to-point predicting hard to optimize. In this paper, we decompose the original BEV segmentation task into two stages, namely BEV map reconstruction and RGB-BEV feature alignment. In the first stage, we train a BEV autoencoder to reconstruct the BEV segmentation maps given corrupted noisy latent representation, which urges the decoder to learn fundamental knowledge of typical BEV patterns. The second stage involves mapping RGB input images into the BEV latent space of the first stage, directly optimizing the correlations between the two views at the feature level. Our approach simplifies the complexity of combining perception and generation into distinct steps, equipping the model to handle intricate and challenging scenes effectively. Besides, we propose to transform the BEV segmentation map from the Cartesian to the polar coordinate system to establish the column-wise correspondence between RGB images and BEV maps. Moreover, our method requires neither multi-scale features nor camera intrinsic parameters for depth estimation and saves computational overhead. Extensive experiments on nuScenes and Argoverse show the effectiveness and efficiency of our method. Code is available at https://github.com/happytianhao/TaDe.
PDF Accepted by CVPR 2024