2024-04-03 更新
Learning CNN on ViT: A Hybrid Model to Explicitly Class-specific Boundaries for Domain Adaptation
Authors:Ba Hung Ngo, Nhat-Tuong Do-Tran, Tuan-Ngoc Nguyen, Hae-Gon Jeon, Tae Jong Choi
Most domain adaptation (DA) methods are based on either a convolutional neural networks (CNNs) or a vision transformers (ViTs). They align the distribution differences between domains as encoders without considering their unique characteristics. For instance, ViT excels in accuracy due to its superior ability to capture global representations, while CNN has an advantage in capturing local representations. This fact has led us to design a hybrid method to fully take advantage of both ViT and CNN, called Explicitly Class-specific Boundaries (ECB). ECB learns CNN on ViT to combine their distinct strengths. In particular, we leverage ViT’s properties to explicitly find class-specific decision boundaries by maximizing the discrepancy between the outputs of the two classifiers to detect target samples far from the source support. In contrast, the CNN encoder clusters target features based on the previously defined class-specific boundaries by minimizing the discrepancy between the probabilities of the two classifiers. Finally, ViT and CNN mutually exchange knowledge to improve the quality of pseudo labels and reduce the knowledge discrepancies of these models. Compared to conventional DA methods, our ECB achieves superior performance, which verifies its effectiveness in this hybrid model. The project website can be found https://dotrannhattuong.github.io/ECB/website/.
PDF
点此查看论文截图
Adaptive Query Prompting for Multi-Domain Landmark Detection
Authors:Qiusen Wei, Guoheng Huang, Xiaochen Yuan, Xuhang Chen, Guo Zhong, Jianwen Huang, Jiajie Huang
Medical landmark detection is crucial in various medical imaging modalities and procedures. Although deep learning-based methods have achieve promising performance, they are mostly designed for specific anatomical regions or tasks. In this work, we propose a universal model for multi-domain landmark detection by leveraging transformer architecture and developing a prompting component, named as Adaptive Query Prompting (AQP). Instead of embedding additional modules in the backbone network, we design a separate module to generate prompts that can be effectively extended to any other transformer network. In our proposed AQP, prompts are learnable parameters maintained in a memory space called prompt pool. The central idea is to keep the backbone frozen and then optimize prompts to instruct the model inference process. Furthermore, we employ a lightweight decoder to decode landmarks from the extracted features, namely Light-MLD. Thanks to the lightweight nature of the decoder and AQP, we can handle multiple datasets by sharing the backbone encoder and then only perform partial parameter tuning without incurring much additional cost. It has the potential to be extended to more landmark detection tasks. We conduct experiments on three widely used X-ray datasets for different medical landmark detection tasks. Our proposed Light-MLD coupled with AQP achieves SOTA performance on many metrics even without the use of elaborate structural designs or complex frameworks.
PDF
点此查看论文截图
Language Guided Domain Generalized Medical Image Segmentation
Authors:Shahina Kunhimon, Muzammal Naseer, Salman Khan, Fahad Shahbaz Khan
Single source domain generalization (SDG) holds promise for more reliable and consistent image segmentation across real-world clinical settings particularly in the medical domain, where data privacy and acquisition cost constraints often limit the availability of diverse datasets. Depending solely on visual features hampers the model’s capacity to adapt effectively to various domains, primarily because of the presence of spurious correlations and domain-specific characteristics embedded within the image features. Incorporating text features alongside visual features is a potential solution to enhance the model’s understanding of the data, as it goes beyond pixel-level information to provide valuable context. Textual cues describing the anatomical structures, their appearances, and variations across various imaging modalities can guide the model in domain adaptation, ultimately contributing to more robust and consistent segmentation. In this paper, we propose an approach that explicitly leverages textual information by incorporating a contrastive learning mechanism guided by the text encoder features to learn a more robust feature representation. We assess the effectiveness of our text-guided contrastive feature alignment technique in various scenarios, including cross-modality, cross-sequence, and cross-site settings for different segmentation tasks. Our approach achieves favorable performance against existing methods in literature. Our code and model weights are available at https://github.com/ShahinaKK/LG_SDG.git.
PDF Accepted at ISBI2024
点此查看论文截图
Modality Translation for Object Detection Adaptation Without Forgetting Prior Knowledge
Authors:Heitor Rapela Medeiros, Masih Aminbeidokhti, Fidel Guerrero Pena, David Latortue, Eric Granger, Marco Pedersoli
A common practice in deep learning consists of training large neural networks on massive datasets to perform accurately for different domains and tasks. While this methodology may work well in numerous application areas, it only applies across modalities due to a larger distribution shift in data captured using different sensors. This paper focuses on the problem of adapting a large object detection model to one or multiple modalities while being efficient. To do so, we propose ModTr as an alternative to the common approach of fine-tuning large models. ModTr consists of adapting the input with a small transformation network trained to minimize the detection loss directly. The original model can therefore work on the translated inputs without any further change or fine-tuning to its parameters. Experimental results on translating from IR to RGB images on two well-known datasets show that this simple ModTr approach provides detectors that can perform comparably or better than the standard fine-tuning without forgetting the original knowledge. This opens the doors to a more flexible and efficient service-based detection pipeline in which, instead of using a different detector for each modality, a unique and unaltered server is constantly running, where multiple modalities with the corresponding translations can query it. Code: https://github.com/heitorrapela/ModTr.
PDF
点此查看论文截图
Diffusion Deepfake
Authors:Chaitali Bhattacharyya, Hanxiao Wang, Feng Zhang, Sungho Kim, Xiatian Zhu
Recent progress in generative AI, primarily through diffusion models, presents significant challenges for real-world deepfake detection. The increased realism in image details, diverse content, and widespread accessibility to the general public complicates the identification of these sophisticated deepfakes. Acknowledging the urgency to address the vulnerability of current deepfake detectors to this evolving threat, our paper introduces two extensive deepfake datasets generated by state-of-the-art diffusion models as other datasets are less diverse and low in quality. Our extensive experiments also showed that our dataset is more challenging compared to the other face deepfake datasets. Our strategic dataset creation not only challenge the deepfake detectors but also sets a new benchmark for more evaluation. Our comprehensive evaluation reveals the struggle of existing detection methods, often optimized for specific image domains and manipulations, to effectively adapt to the intricate nature of diffusion deepfakes, limiting their practical utility. To address this critical issue, we investigate the impact of enhancing training data diversity on representative detection methods. This involves expanding the diversity of both manipulation techniques and image domains. Our findings underscore that increasing training data diversity results in improved generalizability. Moreover, we propose a novel momentum difficulty boosting strategy to tackle the additional challenge posed by training data heterogeneity. This strategy dynamically assigns appropriate sample weights based on learning difficulty, enhancing the model’s adaptability to both easy and challenging samples. Extensive experiments on both existing and newly proposed benchmarks demonstrate that our model optimization approach surpasses prior alternatives significantly.
PDF 28 pages including Supplementary material
点此查看论文截图
Language Model Guided Interpretable Video Action Reasoning
Authors:Ning Wang, Guangming Zhu, HS Li, Liang Zhang, Syed Afaq Ali Shah, Mohammed Bennamoun
While neural networks have excelled in video action recognition tasks, their black-box nature often obscures the understanding of their decision-making processes. Recent approaches used inherently interpretable models to analyze video actions in a manner akin to human reasoning. These models, however, usually fall short in performance compared to their black-box counterparts. In this work, we present a new framework named Language-guided Interpretable Action Recognition framework (LaIAR). LaIAR leverages knowledge from language models to enhance both the recognition capabilities and the interpretability of video models. In essence, we redefine the problem of understanding video model decisions as a task of aligning video and language models. Using the logical reasoning captured by the language model, we steer the training of the video model. This integrated approach not only improves the video model’s adaptability to different domains but also boosts its overall performance. Extensive experiments on two complex video action datasets, Charades & CAD-120, validates the improved performance and interpretability of our LaIAR framework. The code of LaIAR is available at https://github.com/NingWang2049/LaIAR.
PDF Accepted by CVPR 2024
点此查看论文截图
Test-Time Model Adaptation with Only Forward Passes
Authors:Shuaicheng Niu, Chunyan Miao, Guohao Chen, Pengcheng Wu, Peilin Zhao
Test-time adaptation has proven effective in adapting a given trained model to unseen test samples with potential distribution shifts. However, in real-world scenarios, models are usually deployed on resource-limited devices, e.g., FPGAs, and are often quantized and hard-coded with non-modifiable parameters for acceleration. In light of this, existing methods are often infeasible since they heavily depend on computation-intensive backpropagation for model updating that may be not supported. To address this, we propose a test-time Forward-Only Adaptation (FOA) method. In FOA, we seek to solely learn a newly added prompt (as model’s input) via a derivative-free covariance matrix adaptation evolution strategy. To make this strategy work stably under our online unsupervised setting, we devise a novel fitness function by measuring test-training statistic discrepancy and model prediction entropy. Moreover, we design an activation shifting scheme that directly tunes the model activations for shifted test samples, making them align with the source training domain, thereby further enhancing adaptation performance. Without using any backpropagation and altering model weights, FOA runs on quantized 8-bit ViT outperforms gradient-based TENT on full-precision 32-bit ViT, while achieving an up to 24-fold memory reduction on ImageNet-C. The source code will be released.
PDF 17 pages, 3 figures, 14 tables
点此查看论文截图
Atom-Level Optical Chemical Structure Recognition with Limited Supervision
Authors:Martijn Oldenhof, Edward De Brouwer, Adam Arany, Yves Moreau
Identifying the chemical structure from a graphical representation, or image, of a molecule is a challenging pattern recognition task that would greatly benefit drug development. Yet, existing methods for chemical structure recognition do not typically generalize well, and show diminished effectiveness when confronted with domains where data is sparse, or costly to generate, such as hand-drawn molecule images. To address this limitation, we propose a new chemical structure recognition tool that delivers state-of-the-art performance and can adapt to new domains with a limited number of data samples and supervision. Unlike previous approaches, our method provides atom-level localization, and can therefore segment the image into the different atoms and bonds. Our model is the first model to perform OCSR with atom-level entity detection with only SMILES supervision. Through rigorous and extensive benchmarking, we demonstrate the preeminence of our chemical structure recognition approach in terms of data efficiency, accuracy, and atom-level entity prediction.
PDF Accepted in IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024
点此查看论文截图
Semi-Supervised Domain Adaptation for Wildfire Detection
Authors:JooYoung Jang, Youngseo Cha, Jisu Kim, SooHyung Lee, Geonu Lee, Minkook Cho, Young Hwang, Nojun Kwak
Recently, both the frequency and intensity of wildfires have increased worldwide, primarily due to climate change. In this paper, we propose a novel protocol for wildfire detection, leveraging semi-supervised Domain Adaptation for object detection, accompanied by a corresponding dataset designed for use by both academics and industries. Our dataset encompasses 30 times more diverse labeled scenes for the current largest benchmark wildfire dataset, HPWREN, and introduces a new labeling policy for wildfire detection. Inspired by CoordConv, we propose a robust baseline, Location-Aware Object Detection for Semi-Supervised Domain Adaptation (LADA), utilizing a teacher-student based framework capable of extracting translational variance features characteristic of wildfires. With only using 1% target domain labeled data, our framework significantly outperforms our source-only baseline by a notable margin of 3.8% in mean Average Precision on the HPWREN wildfire dataset. Our dataset is available at https://github.com/BloomBerry/LADA.
PDF 16 pages, 5 figures, 22 tables
点此查看论文截图
Cooperative Students: Navigating Unsupervised Domain Adaptation in Nighttime Object Detection
Authors:Jicheng Yuan, Anh Le-Tuan, Manfred Hauswirth, Danh Le-Phuoc
Unsupervised Domain Adaptation (UDA) has shown significant advancements in object detection under well-lit conditions; however, its performance degrades notably in low-visibility scenarios, especially at night, posing challenges not only for its adaptability in low signal-to-noise ratio (SNR) conditions but also for the reliability and efficiency of automated vehicles. To address this problem, we propose a \textbf{Co}operative \textbf{S}tudents (\textbf{CoS}) framework that innovatively employs global-local transformations (GLT) and a proxy-based target consistency (PTC) mechanism to capture the spatial consistency in day- and night-time scenarios effectively, and thus bridge the significant domain shift across contexts. Building upon this, we further devise an adaptive IoU-informed thresholding (AIT) module to gradually avoid overlooking potential true positives and enrich the latent information in the target domain. Comprehensive experiments show that CoS essentially enhanced UDA performance in low-visibility conditions and surpasses current state-of-the-art techniques, achieving an increase in mAP of 3.0\%, 1.9\%, and 2.5\% on BDD100K, SHIFT, and ACDC datasets, respectively. Code is available at https://github.com/jichengyuan/Cooperitive_Students.
PDF Code is available at https://github.com/jichengyuan/Cooperitive_Students
点此查看论文截图
CameraCtrl: Enabling Camera Control for Text-to-Video Generation
Authors:Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, Ceyuan Yang
Controllability plays a crucial role in video generation since it allows users to create desired content. However, existing models largely overlooked the precise control of camera pose that serves as a cinematic language to express deeper narrative nuances. To alleviate this issue, we introduce CameraCtrl, enabling accurate camera pose control for text-to-video(T2V) models. After precisely parameterizing the camera trajectory, a plug-and-play camera module is then trained on a T2V model, leaving others untouched. Additionally, a comprehensive study on the effect of various datasets is also conducted, suggesting that videos with diverse camera distribution and similar appearances indeed enhance controllability and generalization. Experimental results demonstrate the effectiveness of CameraCtrl in achieving precise and domain-adaptive camera control, marking a step forward in the pursuit of dynamic and customized video storytelling from textual and camera pose inputs. Our project website is at: https://hehao13.github.io/projects-CameraCtrl/.
PDF Project page: https://hehao13.github.io/projects-CameraCtrl/ Code: https://github.com/hehao13/CameraCtrl