医学影像/Breast Ultrasound


2024-03-31 更新

TriAug: Out-of-Distribution Detection for Imbalanced Breast Lesion in Ultrasound

Authors:Yinyu Ye, Shijing Chen, Dong Ni, Ruobing Huang

Different diseases, such as histological subtypes of breast lesions, have severely varying incidence rates. Even trained with substantial amount of in-distribution (ID) data, models often encounter out-of-distribution (OOD) samples belonging to unseen classes in clinical reality. To address this, we propose a novel framework built upon a long-tailed OOD detection task for breast ultrasound images. It is equipped with a triplet state augmentation (TriAug) which improves ID classification accuracy while maintaining a promising OOD detection performance. Meanwhile, we designed a balanced sphere loss to handle the class imbalanced problem. Experimental results show that the model outperforms state-of-art OOD approaches both in ID classification (F1-score=42.12%) and OOD detection (AUROC=78.06%).
PDF

点此查看论文截图

Towards Out-of-Distribution Detection for breast cancer classification in Point-of-Care Ultrasound Imaging

Authors:Jennie Karlsson, Marisa Wodrich, Niels Christian Overgaard, Freja Sahlin, Kristina Lång, Anders Heyden, Ida Arvidsson

Deep learning has shown to have great potential in medical applications. In critical domains as such, it is of high interest to have trustworthy algorithms which are able to tell when reliable assessments cannot be guaranteed. Detecting out-of-distribution (OOD) samples is a crucial step towards building a safe classifier. Following a previous study, showing that it is possible to classify breast cancer in point-of-care ultrasound images, this study investigates OOD detection using three different methods: softmax, energy score and deep ensembles. All methods are tested on three different OOD data sets. The results show that the energy score method outperforms the softmax method, performing well on two of the data sets. The ensemble method is the most robust, performing the best at detecting OOD samples for all three OOD data sets.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录