2024-03-31 更新
DiffusionAct: Controllable Diffusion Autoencoder for One-shot Face Reenactment
Authors:Stella Bounareli, Christos Tzelepis, Vasileios Argyriou, Ioannis Patras, Georgios Tzimiropoulos
Video-driven neural face reenactment aims to synthesize realistic facial images that successfully preserve the identity and appearance of a source face, while transferring the target head pose and facial expressions. Existing GAN-based methods suffer from either distortions and visual artifacts or poor reconstruction quality, i.e., the background and several important appearance details, such as hair style/color, glasses and accessories, are not faithfully reconstructed. Recent advances in Diffusion Probabilistic Models (DPMs) enable the generation of high-quality realistic images. To this end, in this paper we present DiffusionAct, a novel method that leverages the photo-realistic image generation of diffusion models to perform neural face reenactment. Specifically, we propose to control the semantic space of a Diffusion Autoencoder (DiffAE), in order to edit the facial pose of the input images, defined as the head pose orientation and the facial expressions. Our method allows one-shot, self, and cross-subject reenactment, without requiring subject-specific fine-tuning. We compare against state-of-the-art GAN-, StyleGAN2-, and diffusion-based methods, showing better or on-par reenactment performance.
PDF Project page: https://stelabou.github.io/diffusionact/
点此查看论文截图
InterHandGen: Two-Hand Interaction Generation via Cascaded Reverse Diffusion
Authors:Jihyun Lee, Shunsuke Saito, Giljoo Nam, Minhyuk Sung, Tae-Kyun Kim
We present InterHandGen, a novel framework that learns the generative prior of two-hand interaction. Sampling from our model yields plausible and diverse two-hand shapes in close interaction with or without an object. Our prior can be incorporated into any optimization or learning methods to reduce ambiguity in an ill-posed setup. Our key observation is that directly modeling the joint distribution of multiple instances imposes high learning complexity due to its combinatorial nature. Thus, we propose to decompose the modeling of joint distribution into the modeling of factored unconditional and conditional single instance distribution. In particular, we introduce a diffusion model that learns the single-hand distribution unconditional and conditional to another hand via conditioning dropout. For sampling, we combine anti-penetration and classifier-free guidance to enable plausible generation. Furthermore, we establish the rigorous evaluation protocol of two-hand synthesis, where our method significantly outperforms baseline generative models in terms of plausibility and diversity. We also demonstrate that our diffusion prior can boost the performance of two-hand reconstruction from monocular in-the-wild images, achieving new state-of-the-art accuracy.
PDF Accepted to CVPR 2024, project page: https://jyunlee.github.io/projects/interhandgen/
点此查看论文截图
LaRE^2: Latent Reconstruction Error Based Method for Diffusion-Generated Image Detection
Authors:Yunpeng Luo, Junlong Du, Ke Yan, Shouhong Ding
The evolution of Diffusion Models has dramatically improved image generation quality, making it increasingly difficult to differentiate between real and generated images. This development, while impressive, also raises significant privacy and security concerns. In response to this, we propose a novel Latent REconstruction error guided feature REfinement method (LaRE^2) for detecting the diffusion-generated images. We come up with the Latent Reconstruction Error (LaRE), the first reconstruction-error based feature in the latent space for generated image detection. LaRE surpasses existing methods in terms of feature extraction efficiency while preserving crucial cues required to differentiate between the real and the fake. To exploit LaRE, we propose an Error-Guided feature REfinement module (EGRE), which can refine the image feature guided by LaRE to enhance the discriminativeness of the feature. Our EGRE utilizes an align-then-refine mechanism, which effectively refines the image feature for generated-image detection from both spatial and channel perspectives. Extensive experiments on the large-scale GenImage benchmark demonstrate the superiority of our LaRE^2, which surpasses the best SoTA method by up to 11.9%/12.1% average ACC/AP across 8 different image generators. LaRE also surpasses existing methods in terms of feature extraction cost, delivering an impressive speed enhancement of 8 times.
PDF CVPR 2024
点此查看论文截图
Predicting Species Occurrence Patterns from Partial Observations
Authors:Hager Radi Abdelwahed, Mélisande Teng, David Rolnick
To address the interlinked biodiversity and climate crises, we need an understanding of where species occur and how these patterns are changing. However, observational data on most species remains very limited, and the amount of data available varies greatly between taxonomic groups. We introduce the problem of predicting species occurrence patterns given (a) satellite imagery, and (b) known information on the occurrence of other species. To evaluate algorithms on this task, we introduce SatButterfly, a dataset of satellite images, environmental data and observational data for butterflies, which is designed to pair with the existing SatBird dataset of bird observational data. To address this task, we propose a general model, R-Tran, for predicting species occurrence patterns that enables the use of partial observational data wherever found. We find that R-Tran outperforms other methods in predicting species encounter rates with partial information both within a taxon (birds) and across taxa (birds and butterflies). Our approach opens new perspectives to leveraging insights from species with abundant data to other species with scarce data, by modelling the ecosystems in which they co-occur.
PDF Tackling Climate Change with Machine Learning workshop at ICLR 2024
点此查看论文截图
Ship in Sight: Diffusion Models for Ship-Image Super Resolution
Authors:Luigi Sigillo, Riccardo Fosco Gramaccioni, Alessandro Nicolosi, Danilo Comminiello
In recent years, remarkable advancements have been achieved in the field of image generation, primarily driven by the escalating demand for high-quality outcomes across various image generation subtasks, such as inpainting, denoising, and super resolution. A major effort is devoted to exploring the application of super-resolution techniques to enhance the quality of low-resolution images. In this context, our method explores in depth the problem of ship image super resolution, which is crucial for coastal and port surveillance. We investigate the opportunity given by the growing interest in text-to-image diffusion models, taking advantage of the prior knowledge that such foundation models have already learned. In particular, we present a diffusion-model-based architecture that leverages text conditioning during training while being class-aware, to best preserve the crucial details of the ships during the generation of the super-resoluted image. Since the specificity of this task and the scarcity availability of off-the-shelf data, we also introduce a large labeled ship dataset scraped from online ship images, mostly from ShipSpotting\footnote{\url{www.shipspotting.com}} website. Our method achieves more robust results than other deep learning models previously employed for super resolution, as proven by the multiple experiments performed. Moreover, we investigate how this model can benefit downstream tasks, such as classification and object detection, thus emphasizing practical implementation in a real-world scenario. Experimental results show flexibility, reliability, and impressive performance of the proposed framework over state-of-the-art methods for different tasks. The code is available at: https://github.com/LuigiSigillo/ShipinSight .
PDF Accepted at 2024 International Joint Conference on Neural Networks (IJCNN)
点此查看论文截图
Generative Multi-modal Models are Good Class-Incremental Learners
Authors:Xusheng Cao, Haori Lu, Linlan Huang, Xialei Liu, Ming-Ming Cheng
In class-incremental learning (CIL) scenarios, the phenomenon of catastrophic forgetting caused by the classifier’s bias towards the current task has long posed a significant challenge. It is mainly caused by the characteristic of discriminative models. With the growing popularity of the generative multi-modal models, we would explore replacing discriminative models with generative ones for CIL. However, transitioning from discriminative to generative models requires addressing two key challenges. The primary challenge lies in transferring the generated textual information into the classification of distinct categories. Additionally, it requires formulating the task of CIL within a generative framework. To this end, we propose a novel generative multi-modal model (GMM) framework for class-incremental learning. Our approach directly generates labels for images using an adapted generative model. After obtaining the detailed text, we use a text encoder to extract text features and employ feature matching to determine the most similar label as the classification prediction. In the conventional CIL settings, we achieve significantly better results in long-sequence task scenarios. Under the Few-shot CIL setting, we have improved by at least 14\% accuracy over all the current state-of-the-art methods with significantly less forgetting. Our code is available at \url{https://github.com/DoubleClass/GMM}.
PDF Accepted at CVPR 2024
点此查看论文截图
ECNet: Effective Controllable Text-to-Image Diffusion Models
Authors:Sicheng Li, Keqiang Sun, Zhixin Lai, Xiaoshi Wu, Feng Qiu, Haoran Xie, Kazunori Miyata, Hongsheng Li
The conditional text-to-image diffusion models have garnered significant attention in recent years. However, the precision of these models is often compromised mainly for two reasons, ambiguous condition input and inadequate condition guidance over single denoising loss. To address the challenges, we introduce two innovative solutions. Firstly, we propose a Spatial Guidance Injector (SGI) which enhances conditional detail by encoding text inputs with precise annotation information. This method directly tackles the issue of ambiguous control inputs by providing clear, annotated guidance to the model. Secondly, to overcome the issue of limited conditional supervision, we introduce Diffusion Consistency Loss (DCL), which applies supervision on the denoised latent code at any given time step. This encourages consistency between the latent code at each time step and the input signal, thereby enhancing the robustness and accuracy of the output. The combination of SGI and DCL results in our Effective Controllable Network (ECNet), which offers a more accurate controllable end-to-end text-to-image generation framework with a more precise conditioning input and stronger controllable supervision. We validate our approach through extensive experiments on generation under various conditions, such as human body skeletons, facial landmarks, and sketches of general objects. The results consistently demonstrate that our method significantly enhances the controllability and robustness of the generated images, outperforming existing state-of-the-art controllable text-to-image models.
PDF
点此查看论文截图
DiffusionFace: Towards a Comprehensive Dataset for Diffusion-Based Face Forgery Analysis
Authors:Zhongxi Chen, Ke Sun, Ziyin Zhou, Xianming Lin, Xiaoshuai Sun, Liujuan Cao, Rongrong Ji
The rapid progress in deep learning has given rise to hyper-realistic facial forgery methods, leading to concerns related to misinformation and security risks. Existing face forgery datasets have limitations in generating high-quality facial images and addressing the challenges posed by evolving generative techniques. To combat this, we present DiffusionFace, the first diffusion-based face forgery dataset, covering various forgery categories, including unconditional and Text Guide facial image generation, Img2Img, Inpaint, and Diffusion-based facial exchange algorithms. Our DiffusionFace dataset stands out with its extensive collection of 11 diffusion models and the high-quality of the generated images, providing essential metadata and a real-world internet-sourced forgery facial image dataset for evaluation. Additionally, we provide an in-depth analysis of the data and introduce practical evaluation protocols to rigorously assess discriminative models’ effectiveness in detecting counterfeit facial images, aiming to enhance security in facial image authentication processes. The dataset is available for download at \url{https://github.com/Rapisurazurite/DiffFace}.
PDF
点此查看论文截图
Attention Calibration for Disentangled Text-to-Image Personalization
Authors:Yanbing Zhang, Mengping Yang, Qin Zhou, Zhe Wang
Recent thrilling progress in large-scale text-to-image (T2I) models has unlocked unprecedented synthesis quality of AI-generated content (AIGC) including image generation, 3D and video composition. Further, personalized techniques enable appealing customized production of a novel concept given only several images as reference. However, an intriguing problem persists: Is it possible to capture multiple, novel concepts from one single reference image? In this paper, we identify that existing approaches fail to preserve visual consistency with the reference image and eliminate cross-influence from concepts. To alleviate this, we propose an attention calibration mechanism to improve the concept-level understanding of the T2I model. Specifically, we first introduce new learnable modifiers bound with classes to capture attributes of multiple concepts. Then, the classes are separated and strengthened following the activation of the cross-attention operation, ensuring comprehensive and self-contained concepts. Additionally, we suppress the attention activation of different classes to mitigate mutual influence among concepts. Together, our proposed method, dubbed DisenDiff, can learn disentangled multiple concepts from one single image and produce novel customized images with learned concepts. We demonstrate that our method outperforms the current state of the art in both qualitative and quantitative evaluations. More importantly, our proposed techniques are compatible with LoRA and inpainting pipelines, enabling more interactive experiences.
PDF Accepted to CVPR 2024
点此查看论文截图
Artifact Reduction in 3D and 4D Cone-beam Computed Tomography Images with Deep Learning — A Review
Authors:Mohammadreza Amirian, Daniel Barco, Ivo Herzig, Frank-Peter Schilling
Deep learning based approaches have been used to improve image quality in cone-beam computed tomography (CBCT), a medical imaging technique often used in applications such as image-guided radiation therapy, implant dentistry or orthopaedics. In particular, while deep learning methods have been applied to reduce various types of CBCT image artifacts arising from motion, metal objects, or low-dose acquisition, a comprehensive review summarizing the successes and shortcomings of these approaches, with a primary focus on the type of artifacts rather than the architecture of neural networks, is lacking in the literature. In this review, the data generation and simulation pipelines, and artifact reduction techniques are specifically investigated for each type of artifact. We provide an overview of deep learning techniques that have successfully been shown to reduce artifacts in 3D, as well as in time-resolved (4D) CBCT through the use of projection- and/or volume-domain optimizations, or by introducing neural networks directly within the CBCT reconstruction algorithms. Research gaps are identified to suggest avenues for future exploration. One of the key findings of this work is an observed trend towards the use of generative models including GANs and score-based or diffusion models, accompanied with the need for more diverse and open training datasets and simulations.
PDF 16 pages, 4 figures, 1 Table, published in IEEE Access Journal
点此查看论文截图
Semi-Supervised Learning for Deep Causal Generative Models
Authors:Yasin Ibrahim, Hermione Warr, Konstantinos Kamnitsas
Developing models that can answer questions of the form “How would $x$ change if $y$ had been $z$?” is fundamental for advancing medical image analysis. Training causal generative models that address such counterfactual questions, though, currently requires that all relevant variables have been observed and that corresponding labels are available in training data. However, clinical data may not have complete records for all patients and state of the art causal generative models are unable to take full advantage of this. We thus develop, for the first time, a semi-supervised deep causal generative model that exploits the causal relationships between variables to maximise the use of all available data. We explore this in the setting where each sample is either fully labelled or fully unlabelled, as well as the more clinically realistic case of having different labels missing for each sample. We leverage techniques from causal inference to infer missing values and subsequently generate realistic counterfactuals, even for samples with incomplete labels.
PDF
点此查看论文截图
ImageNet-D: Benchmarking Neural Network Robustness on Diffusion Synthetic Object
Authors:Chenshuang Zhang, Fei Pan, Junmo Kim, In So Kweon, Chengzhi Mao
We establish rigorous benchmarks for visual perception robustness. Synthetic images such as ImageNet-C, ImageNet-9, and Stylized ImageNet provide specific type of evaluation over synthetic corruptions, backgrounds, and textures, yet those robustness benchmarks are restricted in specified variations and have low synthetic quality. In this work, we introduce generative model as a data source for synthesizing hard images that benchmark deep models’ robustness. Leveraging diffusion models, we are able to generate images with more diversified backgrounds, textures, and materials than any prior work, where we term this benchmark as ImageNet-D. Experimental results show that ImageNet-D results in a significant accuracy drop to a range of vision models, from the standard ResNet visual classifier to the latest foundation models like CLIP and MiniGPT-4, significantly reducing their accuracy by up to 60\%. Our work suggests that diffusion models can be an effective source to test vision models. The code and dataset are available at https://github.com/chenshuang-zhang/imagenet_d.
PDF Accepted at CVPR 2024
点此查看论文截图
Object Pose Estimation via the Aggregation of Diffusion Features
Authors:Tianfu Wang, Guosheng Hu, Hongguang Wang
Estimating the pose of objects from images is a crucial task of 3D scene understanding, and recent approaches have shown promising results on very large benchmarks. However, these methods experience a significant performance drop when dealing with unseen objects. We believe that it results from the limited generalizability of image features. To address this problem, we have an in-depth analysis on the features of diffusion models, e.g. Stable Diffusion, which hold substantial potential for modeling unseen objects. Based on this analysis, we then innovatively introduce these diffusion features for object pose estimation. To achieve this, we propose three distinct architectures that can effectively capture and aggregate diffusion features of different granularity, greatly improving the generalizability of object pose estimation. Our approach outperforms the state-of-the-art methods by a considerable margin on three popular benchmark datasets, LM, O-LM, and T-LESS. In particular, our method achieves higher accuracy than the previous best arts on unseen objects: 98.2% vs. 93.5% on Unseen LM, 85.9% vs. 76.3% on Unseen O-LM, showing the strong generalizability of our method. Our code is released at https://github.com/Tianfu18/diff-feats-pose.
PDF Accepted to CVPR2024
点此查看论文截图
ECoDepth: Effective Conditioning of Diffusion Models for Monocular Depth Estimation
Authors:Suraj Patni, Aradhye Agarwal, Chetan Arora
In the absence of parallax cues, a learning-based single image depth estimation (SIDE) model relies heavily on shading and contextual cues in the image. While this simplicity is attractive, it is necessary to train such models on large and varied datasets, which are difficult to capture. It has been shown that using embeddings from pre-trained foundational models, such as CLIP, improves zero shot transfer in several applications. Taking inspiration from this, in our paper we explore the use of global image priors generated from a pre-trained ViT model to provide more detailed contextual information. We argue that the embedding vector from a ViT model, pre-trained on a large dataset, captures greater relevant information for SIDE than the usual route of generating pseudo image captions, followed by CLIP based text embeddings. Based on this idea, we propose a new SIDE model using a diffusion backbone which is conditioned on ViT embeddings. Our proposed design establishes a new state-of-the-art (SOTA) for SIDE on NYUv2 dataset, achieving Abs Rel error of 0.059(14% improvement) compared to 0.069 by the current SOTA (VPD). And on KITTI dataset, achieving Sq Rel error of 0.139 (2% improvement) compared to 0.142 by the current SOTA (GEDepth). For zero-shot transfer with a model trained on NYUv2, we report mean relative improvement of (20%, 23%, 81%, 25%) over NeWCRFs on (Sun-RGBD, iBims1, DIODE, HyperSim) datasets, compared to (16%, 18%, 45%, 9%) by ZoeDepth. The code is available at https://ecodepth-iitd.github.io
PDF IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024
点此查看论文截图
ObjectDrop: Bootstrapping Counterfactuals for Photorealistic Object Removal and Insertion
Authors:Daniel Winter, Matan Cohen, Shlomi Fruchter, Yael Pritch, Alex Rav-Acha, Yedid Hoshen
Diffusion models have revolutionized image editing but often generate images that violate physical laws, particularly the effects of objects on the scene, e.g., occlusions, shadows, and reflections. By analyzing the limitations of self-supervised approaches, we propose a practical solution centered on a \q{counterfactual} dataset. Our method involves capturing a scene before and after removing a single object, while minimizing other changes. By fine-tuning a diffusion model on this dataset, we are able to not only remove objects but also their effects on the scene. However, we find that applying this approach for photorealistic object insertion requires an impractically large dataset. To tackle this challenge, we propose bootstrap supervision; leveraging our object removal model trained on a small counterfactual dataset, we synthetically expand this dataset considerably. Our approach significantly outperforms prior methods in photorealistic object removal and insertion, particularly at modeling the effects of objects on the scene.
PDF
点此查看论文截图
A Geometric Explanation of the Likelihood OOD Detection Paradox
Authors:Hamidreza Kamkari, Brendan Leigh Ross, Jesse C. Cresswell, Anthony L. Caterini, Rahul G. Krishnan, Gabriel Loaiza-Ganem
Likelihood-based deep generative models (DGMs) commonly exhibit a puzzling behaviour: when trained on a relatively complex dataset, they assign higher likelihood values to out-of-distribution (OOD) data from simpler sources. Adding to the mystery, OOD samples are never generated by these DGMs despite having higher likelihoods. This two-pronged paradox has yet to be conclusively explained, making likelihood-based OOD detection unreliable. Our primary observation is that high-likelihood regions will not be generated if they contain minimal probability mass. We demonstrate how this seeming contradiction of large densities yet low probability mass can occur around data confined to low-dimensional manifolds. We also show that this scenario can be identified through local intrinsic dimension (LID) estimation, and propose a method for OOD detection which pairs the likelihoods and LID estimates obtained from a pre-trained DGM. Our method can be applied to normalizing flows and score-based diffusion models, and obtains results which match or surpass state-of-the-art OOD detection benchmarks using the same DGM backbones. Our code is available at https://github.com/layer6ai-labs/dgm_ood_detection.
PDF
点此查看论文截图
Egocentric Scene-aware Human Trajectory Prediction
Authors:Weizhuo Wang, C. Karen Liu, Monroe Kennedy III
Wearable collaborative robots stand to assist human wearers who need fall prevention assistance or wear exoskeletons. Such a robot needs to be able to predict the ego motion of the wearer based on egocentric vision and the surrounding scene. In this work, we leveraged body-mounted cameras and sensors to anticipate the trajectory of human wearers through complex surroundings. To facilitate research in ego-motion prediction, we have collected a comprehensive walking scene navigation dataset centered on the user’s perspective. We present a method to predict human motion conditioning on the surrounding static scene. Our method leverages a diffusion model to produce a distribution of potential future trajectories, taking into account the user’s observation of the environment. We introduce a compact representation to encode the user’s visual memory of the surroundings, as well as an efficient sample-generating technique to speed up real-time inference of a diffusion model. We ablate our model and compare it to baselines, and results show that our model outperforms existing methods on key metrics of collision avoidance and trajectory mode coverage.
PDF 14 pages, 9 figures
点此查看论文截图
QNCD: Quantization Noise Correction for Diffusion Models
Authors:Huanpeng Chu, Wei Wu, Chengjie Zang, Kun Yuan
Diffusion models have revolutionized image synthesis, setting new benchmarks in quality and creativity. However, their widespread adoption is hindered by the intensive computation required during the iterative denoising process. Post-training quantization (PTQ) presents a solution to accelerate sampling, aibeit at the expense of sample quality, extremely in low-bit settings. Addressing this, our study introduces a unified Quantization Noise Correction Scheme (QNCD), aimed at minishing quantization noise throughout the sampling process. We identify two primary quantization challenges: intra and inter quantization noise. Intra quantization noise, mainly exacerbated by embeddings in the resblock module, extends activation quantization ranges, increasing disturbances in each single denosing step. Besides, inter quantization noise stems from cumulative quantization deviations across the entire denoising process, altering data distributions step-by-step. QNCD combats these through embedding-derived feature smoothing for eliminating intra quantization noise and an effective runtime noise estimatiation module for dynamicly filtering inter quantization noise. Extensive experiments demonstrate that our method outperforms previous quantization methods for diffusion models, achieving lossless results in W4A8 and W8A8 quantization settings on ImageNet (LDM-4). Code is available at: https://github.com/huanpengchu/QNCD
PDF
点此查看论文截图
RecDiffusion: Rectangling for Image Stitching with Diffusion Models
Authors:Tianhao Zhou, Haipeng Li, Ziyi Wang, Ao Luo, Chen-Lin Zhang, Jiajun Li, Bing Zeng, Shuaicheng Liu
Image stitching from different captures often results in non-rectangular boundaries, which is often considered unappealing. To solve non-rectangular boundaries, current solutions involve cropping, which discards image content, inpainting, which can introduce unrelated content, or warping, which can distort non-linear features and introduce artifacts. To overcome these issues, we introduce a novel diffusion-based learning framework, \textbf{RecDiffusion}, for image stitching rectangling. This framework combines Motion Diffusion Models (MDM) to generate motion fields, effectively transitioning from the stitched image’s irregular borders to a geometrically corrected intermediary. Followed by Content Diffusion Models (CDM) for image detail refinement. Notably, our sampling process utilizes a weighted map to identify regions needing correction during each iteration of CDM. Our RecDiffusion ensures geometric accuracy and overall visual appeal, surpassing all previous methods in both quantitative and qualitative measures when evaluated on public benchmarks. Code is released at https://github.com/lhaippp/RecDiffusion.
PDF
点此查看论文截图
Burst Super-Resolution with Diffusion Models for Improving Perceptual Quality
Authors:Kyotaro Tokoro, Kazutoshi Akita, Norimichi Ukita
While burst LR images are useful for improving the SR image quality compared with a single LR image, prior SR networks accepting the burst LR images are trained in a deterministic manner, which is known to produce a blurry SR image. In addition, it is difficult to perfectly align the burst LR images, making the SR image more blurry. Since such blurry images are perceptually degraded, we aim to reconstruct the sharp high-fidelity boundaries. Such high-fidelity images can be reconstructed by diffusion models. However, prior SR methods using the diffusion model are not properly optimized for the burst SR task. Specifically, the reverse process starting from a random sample is not optimized for image enhancement and restoration methods, including burst SR. In our proposed method, on the other hand, burst LR features are used to reconstruct the initial burst SR image that is fed into an intermediate step in the diffusion model. This reverse process from the intermediate step 1) skips diffusion steps for reconstructing the global structure of the image and 2) focuses on steps for refining detailed textures. Our experimental results demonstrate that our method can improve the scores of the perceptual quality metrics. Code: https://github.com/placerkyo/BSRD
PDF Accepted to IJCNN 2024 (International Joint Conference on Neural Networks)
点此查看论文截图
Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model
Authors:Zhicai Wang, Longhui Wei, Tan Wang, Heyu Chen, Yanbin Hao, Xiang Wang, Xiangnan He, Qi Tian
Text-to-image (T2I) generative models have recently emerged as a powerful tool, enabling the creation of photo-realistic images and giving rise to a multitude of applications. However, the effective integration of T2I models into fundamental image classification tasks remains an open question. A prevalent strategy to bolster image classification performance is through augmenting the training set with synthetic images generated by T2I models. In this study, we scrutinize the shortcomings of both current generative and conventional data augmentation techniques. Our analysis reveals that these methods struggle to produce images that are both faithful (in terms of foreground objects) and diverse (in terms of background contexts) for domain-specific concepts. To tackle this challenge, we introduce an innovative inter-class data augmentation method known as Diff-Mix (https://github.com/Zhicaiwww/Diff-Mix), which enriches the dataset by performing image translations between classes. Our empirical results demonstrate that Diff-Mix achieves a better balance between faithfulness and diversity, leading to a marked improvement in performance across diverse image classification scenarios, including few-shot, conventional, and long-tail classifications for domain-specific datasets.
PDF
点此查看论文截图
GANTASTIC: GAN-based Transfer of Interpretable Directions for Disentangled Image Editing in Text-to-Image Diffusion Models
Authors:Yusuf Dalva, Hidir Yesiltepe, Pinar Yanardag
The rapid advancement in image generation models has predominantly been driven by diffusion models, which have demonstrated unparalleled success in generating high-fidelity, diverse images from textual prompts. Despite their success, diffusion models encounter substantial challenges in the domain of image editing, particularly in executing disentangled edits-changes that target specific attributes of an image while leaving irrelevant parts untouched. In contrast, Generative Adversarial Networks (GANs) have been recognized for their success in disentangled edits through their interpretable latent spaces. We introduce GANTASTIC, a novel framework that takes existing directions from pre-trained GAN models-representative of specific, controllable attributes-and transfers these directions into diffusion-based models. This novel approach not only maintains the generative quality and diversity that diffusion models are known for but also significantly enhances their capability to perform precise, targeted image edits, thereby leveraging the best of both worlds.
PDF Project page: https://gantastic.github.io
点此查看论文截图
Detecting Image Attribution for Text-to-Image Diffusion Models in RGB and Beyond
Authors:Katherine Xu, Lingzhi Zhang, Jianbo Shi
Modern text-to-image (T2I) diffusion models can generate images with remarkable realism and creativity. These advancements have sparked research in fake image detection and attribution, yet prior studies have not fully explored the practical and scientific dimensions of this task. In addition to attributing images to 12 state-of-the-art T2I generators, we provide extensive analyses on what inference stage hyperparameters and image modifications are discernible. Our experiments reveal that initialization seeds are highly detectable, along with other subtle variations in the image generation process to some extent. We further investigate what visual traces are leveraged in image attribution by perturbing high-frequency details and employing mid-level representations of image style and structure. Notably, altering high-frequency information causes only slight reductions in accuracy, and training an attributor on style representations outperforms training on RGB images. Our analyses underscore that fake images are detectable and attributable at various levels of visual granularity than previously explored.
PDF Code available at https://github.com/k8xu/ImageAttribution