2024-01-19 更新
Enhancing Small Object Encoding in Deep Neural Networks: Introducing Fast&Focused-Net with Volume-wise Dot Product Layer
Authors:Ali Tofik, Roy Partha Pratim
In this paper, we introduce Fast&Focused-Net, a novel deep neural network architecture tailored for efficiently encoding small objects into fixed-length feature vectors. Contrary to conventional Convolutional Neural Networks (CNNs), Fast&Focused-Net employs a series of our newly proposed layer, the Volume-wise Dot Product (VDP) layer, designed to address several inherent limitations of CNNs. Specifically, CNNs often exhibit a smaller effective receptive field than their theoretical counterparts, limiting their vision span. Additionally, the initial layers in CNNs produce low-dimensional feature vectors, presenting a bottleneck for subsequent learning. Lastly, the computational overhead of CNNs, particularly in capturing diverse image regions by parameter sharing, is significantly high. The VDP layer, at the heart of Fast&Focused-Net, aims to remedy these issues by efficiently covering the entire image patch information with reduced computational demand. Experimental results demonstrate the prowess of Fast&Focused-Net in a variety of applications. For small object classification tasks, our network outperformed state-of-the-art methods on datasets such as CIFAR-10, CIFAR-100, STL-10, SVHN-Cropped, and Fashion-MNIST. In the context of larger image classification, when combined with a transformer encoder (ViT), Fast&Focused-Net produced competitive results for OpenImages V6, ImageNet-1K, and Places365 datasets. Moreover, the same combination showcased unparalleled performance in text recognition tasks across SVT, IC15, SVTP, and HOST datasets. This paper presents the architecture, the underlying motivation, and extensive empirical evidence suggesting that Fast&Focused-Net is a promising direction for efficient and focused deep learning.
PDF
点此查看论文截图
Question-Answer Cross Language Image Matching for Weakly Supervised Semantic Segmentation
Authors:Songhe Deng, Wei Zhuo, Jinheng Xie, Linlin Shen
Class Activation Map (CAM) has emerged as a popular tool for weakly supervised semantic segmentation (WSSS), allowing the localization of object regions in an image using only image-level labels. However, existing CAM methods suffer from under-activation of target object regions and false-activation of background regions due to the fact that a lack of detailed supervision can hinder the model’s ability to understand the image as a whole. In this paper, we propose a novel Question-Answer Cross-Language-Image Matching framework for WSSS (QA-CLIMS), leveraging the vision-language foundation model to maximize the text-based understanding of images and guide the generation of activation maps. First, a series of carefully designed questions are posed to the VQA (Visual Question Answering) model with Question-Answer Prompt Engineering (QAPE) to generate a corpus of both foreground target objects and backgrounds that are adaptive to query images. We then employ contrastive learning in a Region Image Text Contrastive (RITC) network to compare the obtained foreground and background regions with the generated corpus. Our approach exploits the rich textual information from the open vocabulary as additional supervision, enabling the model to generate high-quality CAMs with a more complete object region and reduce false-activation of background regions. We conduct extensive analysis to validate the proposed method and show that our approach performs state-of-the-art on both PASCAL VOC 2012 and MS COCO datasets. Code is available at: https://github.com/CVI-SZU/QA-CLIMS
PDF ACM MM 2023
点此查看论文截图
VMamba: Visual State Space Model
Authors:Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, Yunfan Liu
Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) stand as the two most popular foundation models for visual representation learning. While CNNs exhibit remarkable scalability with linear complexity w.r.t. image resolution, ViTs surpass them in fitting capabilities despite contending with quadratic complexity. A closer inspection reveals that ViTs achieve superior visual modeling performance through the incorporation of global receptive fields and dynamic weights. This observation motivates us to propose a novel architecture that inherits these components while enhancing computational efficiency. To this end, we draw inspiration from the recently introduced state space model and propose the Visual State Space Model (VMamba), which achieves linear complexity without sacrificing global receptive fields. To address the encountered direction-sensitive issue, we introduce the Cross-Scan Module (CSM) to traverse the spatial domain and convert any non-causal visual image into order patch sequences. Extensive experimental results substantiate that VMamba not only demonstrates promising capabilities across various visual perception tasks, but also exhibits more pronounced advantages over established benchmarks as the image resolution increases. Source code has been available at https://github.com/MzeroMiko/VMamba.
PDF 13 pages, 6 figures, 4 tables