2024-01-17 更新
MirrorCalib: Utilizing Human Pose Information for Mirror-based Virtual Camera Calibration
Authors:Longyun Liao, Andrew Mitchell, Rong Zheng
In this paper, we present the novel task of estimating the extrinsic parameters of a virtual camera relative to a real camera in exercise videos with a mirror. This task poses a significant challenge in scenarios where the views from the real and mirrored cameras have no overlap or share salient features. To address this issue, prior knowledge of a human body and 2D joint locations are utilized to estimate the camera extrinsic parameters when a person is in front of a mirror. We devise a modified eight-point algorithm to obtain an initial estimation from 2D joint locations. The 2D joint locations are then refined subject to human body constraints. Finally, a RANSAC algorithm is employed to remove outliers by comparing their epipolar distances to a predetermined threshold. MirrorCalib is evaluated on both synthetic and real datasets and achieves a rotation error of 0.62{\deg}/1.82{\deg} and a translation error of 37.33/69.51 mm on the synthetic/real dataset, which outperforms the state-of-art method.
PDF 11 pages