2024-01-17 更新
Open RAN LSTM Traffic Prediction and Slice Management using Deep Reinforcement Learning
Authors:Fatemeh Lotfi, Fatemeh Afghah
With emerging applications such as autonomous driving, smart cities, and smart factories, network slicing has become an essential component of 5G and beyond networks as a means of catering to a service-aware network. However, managing different network slices while maintaining quality of services (QoS) is a challenge in a dynamic environment. To address this issue, this paper leverages the heterogeneous experiences of distributed units (DUs) in ORAN systems and introduces a novel approach to ORAN slicing xApp using distributed deep reinforcement learning (DDRL). Additionally, to enhance the decision-making performance of the RL agent, a prediction rApp based on long short-term memory (LSTM) is incorporated to provide additional information from the dynamic environment to the xApp. Simulation results demonstrate significant improvements in network performance, particularly in reducing QoS violations. This emphasizes the importance of using the prediction rApp and distributed actors’ information jointly as part of a dynamic xApp.
PDF Accepted to publish in the IEEE Asilomar Conference on Signals, Systems, and Computers, 2023
点此查看论文截图
Reinforcement Learning for Scalable Train Timetable Rescheduling with Graph Representation
Authors:Peng Yue, Yaochu Jin, Xuewu Dai, Zhenhua Feng, Dongliang Cui
Train timetable rescheduling (TTR) aims to promptly restore the original operation of trains after unexpected disturbances or disruptions. Currently, this work is still done manually by train dispatchers, which is challenging to maintain performance under various problem instances. To mitigate this issue, this study proposes a reinforcement learning-based approach to TTR, which makes the following contributions compared to existing work. First, we design a simple directed graph to represent the TTR problem, enabling the automatic extraction of informative states through graph neural networks. Second, we reformulate the construction process of TTR’s solution, not only decoupling the decision model from the problem size but also ensuring the generated scheme’s feasibility. Third, we design a learning curriculum for our model to handle the scenarios with different levels of delay. Finally, a simple local search method is proposed to assist the learned decision model, which can significantly improve solution quality with little additional computation cost, further enhancing the practical value of our method. Extensive experimental results demonstrate the effectiveness of our method. The learned decision model can achieve better performance for various problems with varying degrees of train delay and different scales when compared to handcrafted rules and state-of-the-art solvers.
PDF
点此查看论文截图
BET: Explaining Deep Reinforcement Learning through The Error-Prone Decisions
Authors:Xiao Liu, Jie Zhao, Wubing Chen, Mao Tan, Yongxing Su
Despite the impressive capabilities of Deep Reinforcement Learning (DRL) agents in many challenging scenarios, their black-box decision-making process significantly limits their deployment in safety-sensitive domains. Several previous self-interpretable works focus on revealing the critical states of the agent’s decision. However, they cannot pinpoint the error-prone states. To address this issue, we propose a novel self-interpretable structure, named Backbone Extract Tree (BET), to better explain the agent’s behavior by identify the error-prone states. At a high level, BET hypothesizes that states in which the agent consistently executes uniform decisions exhibit a reduced propensity for errors. To effectively model this phenomenon, BET expresses these states within neighborhoods, each defined by a curated set of representative states. Therefore, states positioned at a greater distance from these representative benchmarks are more prone to error. We evaluate BET in various popular RL environments and show its superiority over existing self-interpretable models in terms of explanation fidelity. Furthermore, we demonstrate a use case for providing explanations for the agents in StarCraft II, a sophisticated multi-agent cooperative game. To the best of our knowledge, we are the first to explain such a complex scenarios using a fully transparent structure.
PDF This is an early version of a paper that submitted to IJCAI 2024 8 pages, 4 figures and 1 table