Few-Shot


2024-01-17 更新

SamLP: A Customized Segment Anything Model for License Plate Detection

Authors:Haoxuan Ding, Junyu Gao, Yuan Yuan, Qi Wang

With the emergence of foundation model, this novel paradigm of deep learning has encouraged many powerful achievements in natural language processing and computer vision. There are many advantages of foundation model, such as excellent feature extraction power, mighty generalization ability, great few-shot and zero-shot learning capacity, etc. which are beneficial to vision tasks. As the unique identity of vehicle, different countries and regions have diverse license plate (LP) styles and appearances, and even different types of vehicles have different LPs. However, recent deep learning based license plate detectors are mainly trained on specific datasets, and these limited datasets constrain the effectiveness and robustness of LP detectors. To alleviate the negative impact of limited data, an attempt to exploit the advantages of foundation model is implement in this paper. We customize a vision foundation model, i.e. Segment Anything Model (SAM), for LP detection task and propose the first LP detector based on vision foundation model, named SamLP. Specifically, we design a Low-Rank Adaptation (LoRA) fine-tuning strategy to inject extra parameters into SAM and transfer SAM into LP detection task. And then, we further propose a promptable fine-tuning step to provide SamLP with prompatable segmentation capacity. The experiments show that our proposed SamLP achieves promising detection performance compared to other LP detectors. Meanwhile, the proposed SamLP has great few-shot and zero-shot learning ability, which shows the potential of transferring vision foundation model. The code is available at https://github.com/Dinghaoxuan/SamLP
PDF

点此查看论文截图

Few-Shot Detection of Machine-Generated Text using Style Representations

Authors:Rafael Rivera Soto, Kailin Koch, Aleem Khan, Barry Chen, Marcus Bishop, Nicholas Andrews

The advent of instruction-tuned language models that convincingly mimic human writing poses a significant risk of abuse. For example, such models could be used for plagiarism, disinformation, spam, or phishing. However, such abuse may be counteracted with the ability to detect whether a piece of text was composed by a language model rather than a human. Some previous approaches to this problem have relied on supervised methods trained on corpora of confirmed human and machine-written documents. Unfortunately, model under-specification poses an unavoidable challenge for neural network-based detectors, making them brittle in the face of data shifts, such as the release of further language models producing still more fluent text than the models used to train the detectors. Other previous approaches require access to the models that may have generated a document in question at inference or detection time, which is often impractical. In light of these challenges, we pursue a fundamentally different approach not relying on samples from language models of concern at training time. Instead, we propose to leverage representations of writing style estimated from human-authored text. Indeed, we find that features effective at distinguishing among human authors are also effective at distinguishing human from machine authors, including state of the art large language models like Llama 2, ChatGPT, and GPT-4. Furthermore, given a handful of examples composed by each of several specific language models of interest, our approach affords the ability to predict which model generated a given document.
PDF

点此查看论文截图

Dual-View Data Hallucination with Semantic Relation Guidance for Few-Shot Image Recognition

Authors:Hefeng Wu, Guangzhi Ye, Ziyang Zhou, Ling Tian, Qing Wang, Liang Lin

Learning to recognize novel concepts from just a few image samples is very challenging as the learned model is easily overfitted on the few data and results in poor generalizability. One promising but underexplored solution is to compensate the novel classes by generating plausible samples. However, most existing works of this line exploit visual information only, rendering the generated data easy to be distracted by some challenging factors contained in the few available samples. Being aware of the semantic information in the textual modality that reflects human concepts, this work proposes a novel framework that exploits semantic relations to guide dual-view data hallucination for few-shot image recognition. The proposed framework enables generating more diverse and reasonable data samples for novel classes through effective information transfer from base classes. Specifically, an instance-view data hallucination module hallucinates each sample of a novel class to generate new data by employing local semantic correlated attention and global semantic feature fusion derived from base classes. Meanwhile, a prototype-view data hallucination module exploits semantic-aware measure to estimate the prototype of a novel class and the associated distribution from the few samples, which thereby harvests the prototype as a more stable sample and enables resampling a large number of samples. We conduct extensive experiments and comparisons with state-of-the-art methods on several popular few-shot benchmarks to verify the effectiveness of the proposed framework.
PDF 13 pages

点此查看论文截图

EHRAgent: Code Empowers Large Language Models for Complex Tabular Reasoning on Electronic Health Records

Authors:Wenqi Shi, Ran Xu, Yuchen Zhuang, Yue Yu, Jieyu Zhang, Hang Wu, Yuanda Zhu, Joyce Ho, Carl Yang, May D. Wang

Large language models (LLMs) have demonstrated exceptional capabilities in planning and tool utilization as autonomous agents, but few have been developed for medical problem-solving. We propose EHRAgent1, an LLM agent empowered with a code interface, to autonomously generate and execute code for complex clinical tasks within electronic health records (EHRs). First, we formulate an EHR question-answering task into a tool-use planning process, efficiently decomposing a complicated task into a sequence of manageable actions. By integrating interactive coding and execution feedback, EHRAgent learns from error messages and improves the originally generated code through iterations. Furthermore, we enhance the LLM agent by incorporating long-term memory, which allows EHRAgent to effectively select and build upon the most relevant successful cases from past experiences. Experiments on two real-world EHR datasets show that EHRAgent outperforms the strongest LLM agent baseline by 36.48% and 12.41%, respectively. EHRAgent leverages the emerging few-shot learning capabilities of LLMs, enabling autonomous code generation and execution to tackle complex clinical tasks with minimal demonstrations.
PDF Work in Progress

点此查看论文截图

Enhanced Few-Shot Class-Incremental Learning via Ensemble Models

Authors:Mingli Zhu, Zihao Zhu, Sihong Chen, Chen Chen, Baoyuan Wu

Few-shot class-incremental learning (FSCIL) aims to continually fit new classes with limited training data, while maintaining the performance of previously learned classes. The main challenges are overfitting the rare new training samples and forgetting old classes. While catastrophic forgetting has been extensively studied, the overfitting problem has attracted less attention in FSCIL. To tackle overfitting challenge, we design a new ensemble model framework cooperated with data augmentation to boost generalization. In this way, the enhanced model works as a library storing abundant features to guarantee fast adaptation to downstream tasks. Specifically, the multi-input multi-output ensemble structure is applied with a spatial-aware data augmentation strategy, aiming at diversifying the feature extractor and alleviating overfitting in incremental sessions. Moreover, self-supervised learning is also integrated to further improve the model generalization. Comprehensive experimental results show that the proposed method can indeed mitigate the overfitting problem in FSCIL, and outperform the state-of-the-art methods.
PDF

点此查看论文截图

Harnessing Large Language Models Over Transformer Models for Detecting Bengali Depressive Social Media Text: A Comprehensive Study

Authors:Ahmadul Karim Chowdhury, Md. Saidur Rahman Sujon, Md. Shirajus Salekin Shafi, Tasin Ahmmad, Sifat Ahmed, Khan Md Hasib, Faisal Muhammad Shah

In an era where the silent struggle of underdiagnosed depression pervades globally, our research delves into the crucial link between mental health and social media. This work focuses on early detection of depression, particularly in extroverted social media users, using LLMs such as GPT 3.5, GPT 4 and our proposed GPT 3.5 fine-tuned model DepGPT, as well as advanced Deep learning models(LSTM, Bi-LSTM, GRU, BiGRU) and Transformer models(BERT, BanglaBERT, SahajBERT, BanglaBERT-Base). The study categorized Reddit and X datasets into “Depressive” and “Non-Depressive” segments, translated into Bengali by native speakers with expertise in mental health, resulting in the creation of the Bengali Social Media Depressive Dataset (BSMDD). Our work provides full architecture details for each model and a methodical way to assess their performance in Bengali depressive text categorization using zero-shot and few-shot learning techniques. Our work demonstrates the superiority of SahajBERT and Bi-LSTM with FastText embeddings in their respective domains also tackles explainability issues with transformer models and emphasizes the effectiveness of LLMs, especially DepGPT, demonstrating flexibility and competence in a range of learning contexts. According to the experiment results, the proposed model, DepGPT, outperformed not only Alpaca Lora 7B in zero-shot and few-shot scenarios but also every other model, achieving a near-perfect accuracy of 0.9796 and an F1-score of 0.9804, high recall, and exceptional precision. Although competitive, GPT-3.5 Turbo and Alpaca Lora 7B show relatively poorer effectiveness in zero-shot and few-shot situations. The work emphasizes the effectiveness and flexibility of LLMs in a variety of linguistic circumstances, providing insightful information about the complex field of depression detection models.
PDF

点此查看论文截图

Fine-Grained Prototypes Distillation for Few-Shot Object Detection

Authors:Zichen Wang, Bo Yang, Haonan Yue, Zhenghao Ma

Few-shot object detection (FSOD) aims at extending a generic detector for novel object detection with only a few training examples. It attracts great concerns recently due to the practical meanings. Meta-learning has been demonstrated to be an effective paradigm for this task. In general, methods based on meta-learning employ an additional support branch to encode novel examples (a.k.a. support images) into class prototypes, which are then fused with query branch to facilitate the model prediction. However, the class-level prototypes are difficult to precisely generate, and they also lack detailed information, leading to instability in performance.New methods are required to capture the distinctive local context for more robust novel object detection. To this end, we propose to distill the most representative support features into fine-grained prototypes. These prototypes are then assigned into query feature maps based on the matching results, modeling the detailed feature relations between two branches. This process is realized by our Fine-Grained Feature Aggregation (FFA) module. Moreover, in terms of high-level feature fusion, we propose Balanced Class-Agnostic Sampling (B-CAS) strategy and Non-Linear Fusion (NLF) module from differenct perspectives. They are complementary to each other and depict the high-level feature relations more effectively. Extensive experiments on PASCAL VOC and MS COCO benchmarks show that our method sets a new state-of-the-art performance in most settings. Our code is available at https://github.com/wangchen1801/FPD.
PDF Accepted by AAAI2024

点此查看论文截图

Cross-Domain Few-Shot Segmentation via Iterative Support-Query Correspondence Mining

Authors:Jiahao Nie, Yun Xing, Gongjie Zhang, Pei Yan, Aoran Xiao, Yap-Peng Tan, Alex C. Kot, Shijian Lu

Cross-Domain Few-Shot Segmentation (CD-FSS) poses the challenge of segmenting novel categories from a distinct domain using only limited exemplars. In this paper, we undertake a comprehensive study of CD-FSS and uncover two crucial insights: (i) the necessity of a fine-tuning stage to effectively transfer the learned meta-knowledge across domains, and (ii) the overfitting risk during the na\”ive fine-tuning due to the scarcity of novel category examples. With these insights, we propose a novel cross-domain fine-tuning strategy that addresses the challenging CD-FSS tasks. We first design Bi-directional Few-shot Prediction (BFP), which establishes support-query correspondence in a bi-directional manner, crafting augmented supervision to reduce the overfitting risk. Then we further extend BFP into Iterative Few-shot Adaptor (IFA), which is a recursive framework to capture the support-query correspondence iteratively, targeting maximal exploitation of supervisory signals from the sparse novel category samples. Extensive empirical evaluations show that our method significantly outperforms the state-of-the-arts (+7.8\%), which verifies that IFA tackles the cross-domain challenges and mitigates the overfitting simultaneously. Code will be made available.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录