强化学习


2024-01-12 更新

SPQR: Controlling Q-ensemble Independence with Spiked Random Model for Reinforcement Learning

Authors:Dohyeok Lee, Seungyub Han, Taehyun Cho, Jungwoo Lee

Alleviating overestimation bias is a critical challenge for deep reinforcement learning to achieve successful performance on more complex tasks or offline datasets containing out-of-distribution data. In order to overcome overestimation bias, ensemble methods for Q-learning have been investigated to exploit the diversity of multiple Q-functions. Since network initialization has been the predominant approach to promote diversity in Q-functions, heuristically designed diversity injection methods have been studied in the literature. However, previous studies have not attempted to approach guaranteed independence over an ensemble from a theoretical perspective. By introducing a novel regularization loss for Q-ensemble independence based on random matrix theory, we propose spiked Wishart Q-ensemble independence regularization (SPQR) for reinforcement learning. Specifically, we modify the intractable hypothesis testing criterion for the Q-ensemble independence into a tractable KL divergence between the spectral distribution of the Q-ensemble and the target Wigner’s semicircle distribution. We implement SPQR in several online and offline ensemble Q-learning algorithms. In the experiments, SPQR outperforms the baseline algorithms in both online and offline RL benchmarks.
PDF Published as a conference paper at NeurIPS 23

点此查看论文截图

Human as AI Mentor: Enhanced Human-in-the-loop Reinforcement Learning for Safe and Efficient Autonomous Driving

Authors:Zilin Huang, Zihao Sheng, Chengyuan Ma, Sikai Chen

Despite significant progress in autonomous vehicles (AVs), the development of driving policies that ensure both the safety of AVs and traffic flow efficiency has not yet been fully explored. In this paper, we propose an enhanced human-in-the-loop reinforcement learning method, termed the Human as AI mentor-based deep reinforcement learning (HAIM-DRL) framework, which facilitates safe and efficient autonomous driving in mixed traffic platoon. Drawing inspiration from the human learning process, we first introduce an innovative learning paradigm that effectively injects human intelligence into AI, termed Human as AI mentor (HAIM). In this paradigm, the human expert serves as a mentor to the AI agent. While allowing the agent to sufficiently explore uncertain environments, the human expert can take control in dangerous situations and demonstrate correct actions to avoid potential accidents. On the other hand, the agent could be guided to minimize traffic flow disturbance, thereby optimizing traffic flow efficiency. In detail, HAIM-DRL leverages data collected from free exploration and partial human demonstrations as its two training sources. Remarkably, we circumvent the intricate process of manually designing reward functions; instead, we directly derive proxy state-action values from partial human demonstrations to guide the agents’ policy learning. Additionally, we employ a minimal intervention technique to reduce the human mentor’s cognitive load. Comparative results show that HAIM-DRL outperforms traditional methods in driving safety, sampling efficiency, mitigation of traffic flow disturbance, and generalizability to unseen traffic scenarios. The code and demo videos for this paper can be accessed at: https://zilin-huang.github.io/HAIM-DRL-website/
PDF Accepted by Communications in Transportation Research

点此查看论文截图

On Sample-Efficient Offline Reinforcement Learning: Data Diversity, Posterior Sampling, and Beyond

Authors:Thanh Nguyen-Tang, Raman Arora

We seek to understand what facilitates sample-efficient learning from historical datasets for sequential decision-making, a problem that is popularly known as offline reinforcement learning (RL). Further, we are interested in algorithms that enjoy sample efficiency while leveraging (value) function approximation. In this paper, we address these fundamental questions by (i) proposing a notion of data diversity that subsumes the previous notions of coverage measures in offline RL and (ii) using this notion to {unify} three distinct classes of offline RL algorithms based on version spaces (VS), regularized optimization (RO), and posterior sampling (PS). We establish that VS-based, RO-based, and PS-based algorithms, under standard assumptions, achieve \emph{comparable} sample efficiency, which recovers the state-of-the-art sub-optimality bounds for finite and linear model classes with the standard assumptions. This result is surprising, given that the prior work suggested an unfavorable sample complexity of the RO-based algorithm compared to the VS-based algorithm, whereas posterior sampling is rarely considered in offline RL due to its explorative nature. Notably, our proposed model-free PS-based algorithm for offline RL is {novel}, with sub-optimality bounds that are {frequentist} (i.e., worst-case) in nature.
PDF NeurIPS’23

点此查看论文截图

Deep Reinforcement Multi-agent Learning framework for Information Gathering with Local Gaussian Processes for Water Monitoring

Authors:Samuel Yanes Luis, Dmitriy Shutin, Juan Marchal Gómez, Daniel Gutiérrez Reina, Sergio Toral Marín

The conservation of hydrological resources involves continuously monitoring their contamination. A multi-agent system composed of autonomous surface vehicles is proposed in this paper to efficiently monitor the water quality. To achieve a safe control of the fleet, the fleet policy should be able to act based on measurements and to the the fleet state. It is proposed to use Local Gaussian Processes and Deep Reinforcement Learning to jointly obtain effective monitoring policies. Local Gaussian processes, unlike classical global Gaussian processes, can accurately model the information in a dissimilar spatial correlation which captures more accurately the water quality information. A Deep convolutional policy is proposed, that bases the decisions on the observation on the mean and variance of this model, by means of an information gain reward. Using a Double Deep Q-Learning algorithm, agents are trained to minimize the estimation error in a safe manner thanks to a Consensus-based heuristic. Simulation results indicate an improvement of up to 24% in terms of the mean absolute error with the proposed models. Also, training results with 1-3 agents indicate that our proposed approach returns 20% and 24% smaller average estimation errors for, respectively, monitoring water quality variables and monitoring algae blooms, as compared to state-of-the-art approaches
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录