Open-Set


2024-01-12 更新

Open Set Dandelion Network for IoT Intrusion Detection

Authors:Jiashu Wu, Hao Dai, Kenneth B. Kent, Jerome Yen, Chengzhong Xu, Yang Wang

As IoT devices become widely, it is crucial to protect them from malicious intrusions. However, the data scarcity of IoT limits the applicability of traditional intrusion detection methods, which are highly data-dependent. To address this, in this paper we propose the Open-Set Dandelion Network (OSDN) based on unsupervised heterogeneous domain adaptation in an open-set manner. The OSDN model performs intrusion knowledge transfer from the knowledge-rich source network intrusion domain to facilitate more accurate intrusion detection for the data-scarce target IoT intrusion domain. Under the open-set setting, it can also detect newly-emerged target domain intrusions that are not observed in the source domain. To achieve this, the OSDN model forms the source domain into a dandelion-like feature space in which each intrusion category is compactly grouped and different intrusion categories are separated, i.e., simultaneously emphasising inter-category separability and intra-category compactness. The dandelion-based target membership mechanism then forms the target dandelion. Then, the dandelion angular separation mechanism achieves better inter-category separability, and the dandelion embedding alignment mechanism further aligns both dandelions in a finer manner. To promote intra-category compactness, the discriminating sampled dandelion mechanism is used. Assisted by the intrusion classifier trained using both known and generated unknown intrusion knowledge, a semantic dandelion correction mechanism emphasises easily-confused categories and guides better inter-category separability. Holistically, these mechanisms form the OSDN model that effectively performs intrusion knowledge transfer to benefit IoT intrusion detection. Comprehensive experiments on several intrusion datasets verify the effectiveness of the OSDN model, outperforming three state-of-the-art baseline methods by 16.9%.
PDF Accepted by ACM Transactions on Internet Technology

点此查看论文截图

Inconsistency-Based Data-Centric Active Open-Set Annotation

Authors:Ruiyu Mao, Ouyang Xu, Yunhui Guo

Active learning is a commonly used approach that reduces the labeling effort required to train deep neural networks. However, the effectiveness of current active learning methods is limited by their closed-world assumptions, which assume that all data in the unlabeled pool comes from a set of predefined known classes. This assumption is often not valid in practical situations, as there may be unknown classes in the unlabeled data, leading to the active open-set annotation problem. The presence of unknown classes in the data can significantly impact the performance of existing active learning methods due to the uncertainty they introduce. To address this issue, we propose a novel data-centric active learning method called NEAT that actively annotates open-set data. NEAT is designed to label known classes data from a pool of both known and unknown classes unlabeled data. It utilizes the clusterability of labels to identify the known classes from the unlabeled pool and selects informative samples from those classes based on a consistency criterion that measures inconsistencies between model predictions and local feature distribution. Unlike the recently proposed learning-centric method for the same problem, NEAT is much more computationally efficient and is a data-centric active open-set annotation method. Our experiments demonstrate that NEAT achieves significantly better performance than state-of-the-art active learning methods for active open-set annotation.
PDF AAAI 2024

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录