2024-01-12 更新
Adaptive FSS: A Novel Few-Shot Segmentation Framework via Prototype Enhancement
Authors:Jing Wang, Jinagyun Li, Chen Chen, Yisi Zhang, Haoran Shen, Tianxiang Zhang
The Few-Shot Segmentation (FSS) aims to accomplish the novel class segmentation task with a few annotated images. Current FSS research based on meta-learning focus on designing a complex interaction mechanism between the query and support feature. However, unlike humans who can rapidly learn new things from limited samples, the existing approach relies solely on fixed feature matching to tackle new tasks, lacking adaptability. In this paper, we propose a novel framework based on the adapter mechanism, namely Adaptive FSS, which can efficiently adapt the existing FSS model to the novel classes. In detail, we design the Prototype Adaptive Module (PAM), which utilizes accurate category information provided by the support set to derive class prototypes, enhancing class-specific information in the multi-stage representation. In addition, our approach is compatible with diverse FSS methods with different backbones by simply inserting PAM between the layers of the encoder. Experiments demonstrate that our method effectively improves the performance of the FSS models (e.g., MSANet, HDMNet, FPTrans, and DCAMA) and achieve new state-of-the-art (SOTA) results (i.e., 72.4\% and 79.1\% mIoU on PASCAL-5$^i$ 1-shot and 5-shot settings, 52.7\% and 60.0\% mIoU on COCO-20$^i$ 1-shot and 5-shot settings). Our code can be available at https://github.com/jingw193/AdaptiveFSS.
PDF
点此查看论文截图
Few-Shot Causal Representation Learning for Out-of-Distribution Generalization on Heterogeneous Graphs
Authors:Pengfei Ding, Yan Wang, Guanfeng Liu, Nan Wang
Heterogeneous graph few-shot learning (HGFL) has been developed to address the label sparsity issue in heterogeneous graphs (HGs), which consist of various types of nodes and edges. The core concept of HGFL is to extract knowledge from rich-labeled classes in a source HG, transfer this knowledge to a target HG to facilitate learning new classes with few-labeled training data, and finally make predictions on unlabeled testing data. Existing methods typically assume that the source HG, training data, and testing data all share the same distribution. However, in practice, distribution shifts among these three types of data are inevitable due to two reasons: (1) the limited availability of the source HG that matches the target HG distribution, and (2) the unpredictable data generation mechanism of the target HG. Such distribution shifts result in ineffective knowledge transfer and poor learning performance in existing methods, thereby leading to a novel problem of out-of-distribution (OOD) generalization in HGFL. To address this challenging problem, we propose a novel Causal OOD Heterogeneous graph Few-shot learning model, namely COHF. In COHF, we first characterize distribution shifts in HGs with a structural causal model, establishing an invariance principle for OOD generalization in HGFL. Then, following this invariance principle, we propose a new variational autoencoder-based heterogeneous graph neural network to mitigate the impact of distribution shifts. Finally, by integrating this network with a novel meta-learning framework, COHF effectively transfers knowledge to the target HG to predict new classes with few-labeled data. Extensive experiments on seven real-world datasets have demonstrated the superior performance of COHF over the state-of-the-art methods.
PDF
点此查看论文截图
Plug-and-Play Transformer Modules for Test-Time Adaptation
Authors:Xiangyu Chang, Sk Miraj Ahmed, Srikanth V. Krishnamurthy, Basak Guler, Ananthram Swami, Samet Oymak, Amit K. Roy-Chowdhury
Parameter-efficient tuning (PET) methods such as LoRA, Adapter, and Visual Prompt Tuning (VPT) have found success in enabling adaptation to new domains by tuning small modules within a transformer model. However, the number of domains encountered during test time can be very large, and the data is usually unlabeled. Thus, adaptation to new domains is challenging; it is also impractical to generate customized tuned modules for each such domain. Toward addressing these challenges, this work introduces PLUTO: a Plug-and-pLay modUlar Test-time domain adaptatiOn strategy. We pre-train a large set of modules, each specialized for different source domains, effectively creating a ``module store’’. Given a target domain with few-shot unlabeled data, we introduce an unsupervised test-time adaptation (TTA) method to (1) select a sparse subset of relevant modules from this store and (2) create a weighted combination of selected modules without tuning their weights. This plug-and-play nature enables us to harness multiple most-relevant source domains in a single inference call. Comprehensive evaluations demonstrate that PLUTO uniformly outperforms alternative TTA methods and that selecting $\leq$5 modules suffice to extract most of the benefit. At a high level, our method equips pre-trained transformers with the capability to dynamically adapt to new domains, motivating a new paradigm for efficient and scalable domain adaptation.
PDF
点此查看论文截图
Improving the Robustness of Knowledge-Grounded Dialogue via Contrastive Learning
Authors:Jiaan Wang, Jianfeng Qu, Kexin Wang, Zhixu Li, Wen Hua, Ximing Li, An Liu
Knowledge-grounded dialogue (KGD) learns to generate an informative response based on a given dialogue context and external knowledge (\emph{e.g.}, knowledge graphs; KGs). Recently, the emergence of large language models (LLMs) and pre-training techniques has brought great success to knowledge-grounded dialogue. However, when building KGD systems in real applications, there are various real-world noises that are inevitable to face. For example, the dialogue context might involve perturbations such as misspellings and abbreviations. In addition, KGs typically suffer from incompletion and also might contain erroneous and outdated facts. Such real-world noises pose a challenge to the robustness of KGD systems and hinder their applications in the real world. In this paper, we propose an entity-based contrastive learning framework for improving the robustness of KGD. Specifically, we make use of the entity information in a KGD sample to create both its positive and negative samples which involve semantic-irrelevant and semantic-relevant perturbations, respectively. The contrastive learning framework ensures the KGD model is aware of these two types of perturbations, thus generating informative responses with the potentially noisy inputs in real applications. Experimental results on three benchmark datasets show that our method achieves new state-of-the-art performance in terms of automatic evaluation scores, verifying its effectiveness and potentiality. Furthermore, we show that our method can generate better responses than comparison models in both the noisy and the few-shot settings.
PDF Accepted by AAAI 2024
点此查看论文截图
Transfer-Learning-Based Autotuning Using Gaussian Copula
Authors:Thomas Randall, Jaehoon Koo, Brice Videau, Michael Kruse, Xingfu Wu, Paul Hovland, Mary Hall, Rong Ge, Prasanna Balaprakash
As diverse high-performance computing (HPC) systems are built, many opportunities arise for applications to solve larger problems than ever before. Given the significantly increased complexity of these HPC systems and application tuning, empirical performance tuning, such as autotuning, has emerged as a promising approach in recent years. Despite its effectiveness, autotuning is often a computationally expensive approach. Transfer learning (TL)-based autotuning seeks to address this issue by leveraging the data from prior tuning. Current TL methods for autotuning spend significant time modeling the relationship between parameter configurations and performance, which is ineffective for few-shot (that is, few empirical evaluations) tuning on new tasks. We introduce the first generative TL-based autotuning approach based on the Gaussian copula (GC) to model the high-performing regions of the search space from prior data and then generate high-performing configurations for new tasks. This allows a sampling-based approach that maximizes few-shot performance and provides the first probabilistic estimation of the few-shot budget for effective TL-based autotuning. We compare our generative TL approach with state-of-the-art autotuning techniques on several benchmarks. We find that the GC is capable of achieving 64.37% of peak few-shot performance in its first evaluation. Furthermore, the GC model can determine a few-shot transfer budget that yields up to 33.39$\times$ speedup, a dramatic improvement over the 20.58$\times$ speedup using prior techniques.
PDF 13 pages, 5 figures, 7 tables, the definitive version of this work is published in the Proceedings of the ACM International Conference on Supercomputing 2023, available at https://dl.acm.org/doi/10.1145/3577193.3593712
点此查看论文截图
Large Model based Sequential Keyframe Extraction for Video Summarization
Authors:Kailong Tan, Yuxiang Zhou, Qianchen Xia, Rui Liu, Yong Chen
Keyframe extraction aims to sum up a video’s semantics with the minimum number of its frames. This paper puts forward a Large Model based Sequential Keyframe Extraction for video summarization, dubbed LMSKE, which contains three stages as below. First, we use the large model “TransNetV21” to cut the video into consecutive shots, and employ the large model “CLIP2” to generate each frame’s visual feature within each shot; Second, we develop an adaptive clustering algorithm to yield candidate keyframes for each shot, with each candidate keyframe locating nearest to a cluster center; Third, we further reduce the above candidate keyframes via redundancy elimination within each shot, and finally concatenate them in accordance with the sequence of shots as the final sequential keyframes. To evaluate LMSKE, we curate a benchmark dataset and conduct rich experiments, whose results exhibit that LMSKE performs much better than quite a few SOTA competitors with average F1 of 0.5311, average fidelity of 0.8141, and average compression ratio of 0.9922.
PDF This paper has been accepted for CDIVP 2024
点此查看论文截图
Less is More : A Closer Look at Multi-Modal Few-Shot Learning
Authors:Chunpeng Zhou, Haishuai Wang, Xilu Yuan, Zhi Yu, Jiajun Bu
Few-shot Learning aims to learn and distinguish new categories with a very limited number of available images, presenting a significant challenge in the realm of deep learning. Recent researchers have sought to leverage the additional textual or linguistic information of these rare categories with a pre-trained language model to facilitate learning, thus partially alleviating the problem of insufficient supervision signals. However, the full potential of the textual information and pre-trained language model have been underestimated in the few-shot learning till now, resulting in limited performance enhancements. To address this, we propose a simple but effective framework for few-shot learning tasks, specifically designed to exploit the textual information and language model. In more detail, we explicitly exploit the zero-shot capability of the pre-trained language model with the learnable prompt. And we just add the visual feature with the textual feature for inference directly without the intricate designed fusion modules in previous works. Additionally, we apply the self-ensemble and distillation to further enhance these components. Our extensive experiments conducted across four widely used few-shot datasets demonstrate that our simple framework achieves impressive results. Particularly noteworthy is its outstanding performance in the 1-shot learning task, surpassing state-of-the-art methods by an average of 3.0\% in classification accuracy. \footnote{We will make the source codes of the proposed framework publicly available upon acceptance. }.
PDF
点此查看论文截图
Dynamic Indoor Fingerprinting Localization based on Few-Shot Meta-Learning with CSI Images
Authors:Jiyu Jiao, Xiaojun Wang, Chenpei Han, Yuhua Huang, Yizhuo Zhang
While fingerprinting localization is favored for its effectiveness, it is hindered by high data acquisition costs and the inaccuracy of static database-based estimates. Addressing these issues, this letter presents an innovative indoor localization method using a data-efficient meta-learning algorithm. This approach, grounded in the ``Learning to Learn’’ paradigm of meta-learning, utilizes historical localization tasks to improve adaptability and learning efficiency in dynamic indoor environments. We introduce a task-weighted loss to enhance knowledge transfer within this framework. Our comprehensive experiments confirm the method’s robustness and superiority over current benchmarks, achieving a notable 23.13\% average gain in Mean Euclidean Distance, particularly effective in scenarios with limited CSI data.
PDF 5 pages,7 figures
点此查看论文截图
PartSTAD: 2D-to-3D Part Segmentation Task Adaptation
Authors:Hyunjin Kim, Minhyuk Sung
We introduce PartSTAD, a method designed for the task adaptation of 2D-to-3D segmentation lifting. Recent studies have highlighted the advantages of utilizing 2D segmentation models to achieve high-quality 3D segmentation through few-shot adaptation. However, previous approaches have focused on adapting 2D segmentation models for domain shift to rendered images and synthetic text descriptions, rather than optimizing the model specifically for 3D segmentation. Our proposed task adaptation method finetunes a 2D bounding box prediction model with an objective function for 3D segmentation. We introduce weights for 2D bounding boxes for adaptive merging and learn the weights using a small additional neural network. Additionally, we incorporate SAM, a foreground segmentation model on a bounding box, to improve the boundaries of 2D segments and consequently those of 3D segmentation. Our experiments on the PartNet-Mobility dataset show significant improvements with our task adaptation approach, achieving a 7.0%p increase in mIoU and a 5.2%p improvement in mAP_50 for semantic and instance segmentation compared to the SotA few-shot 3D segmentation model.
PDF