Domain Adaptation


2024-01-05 更新

DiffusionGAN3D: Boosting Text-guided 3D Generation and Domain Adaption by Combining 3D GANs and Diffusion Priors

Authors:Biwen Lei, Kai Yu, Mengyang Feng, Miaomiao Cui, Xuansong Xie

Text-guided domain adaption and generation of 3D-aware portraits find many applications in various fields. However, due to the lack of training data and the challenges in handling the high variety of geometry and appearance, the existing methods for these tasks suffer from issues like inflexibility, instability, and low fidelity. In this paper, we propose a novel framework DiffusionGAN3D, which boosts text-guided 3D domain adaption and generation by combining 3D GANs and diffusion priors. Specifically, we integrate the pre-trained 3D generative models (e.g., EG3D) and text-to-image diffusion models. The former provides a strong foundation for stable and high-quality avatar generation from text. And the diffusion models in turn offer powerful priors and guide the 3D generator finetuning with informative direction to achieve flexible and efficient text-guided domain adaption. To enhance the diversity in domain adaption and the generation capability in text-to-avatar, we introduce the relative distance loss and case-specific learnable triplane respectively. Besides, we design a progressive texture refinement module to improve the texture quality for both tasks above. Extensive experiments demonstrate that the proposed framework achieves excellent results in both domain adaption and text-to-avatar tasks, outperforming existing methods in terms of generation quality and efficiency. The project homepage is at https://younglbw.github.io/DiffusionGAN3D-homepage/.
PDF

点此查看论文截图

Frequency-Adaptive Pan-Sharpening with Mixture of Experts

Authors:Xuanhua He, Keyu Yan, Rui Li, Chengjun Xie, Jie Zhang, Man Zhou

Pan-sharpening involves reconstructing missing high-frequency information in multi-spectral images with low spatial resolution, using a higher-resolution panchromatic image as guidance. Although the inborn connection with frequency domain, existing pan-sharpening research has not almost investigated the potential solution upon frequency domain. To this end, we propose a novel Frequency Adaptive Mixture of Experts (FAME) learning framework for pan-sharpening, which consists of three key components: the Adaptive Frequency Separation Prediction Module, the Sub-Frequency Learning Expert Module, and the Expert Mixture Module. In detail, the first leverages the discrete cosine transform to perform frequency separation by predicting the frequency mask. On the basis of generated mask, the second with low-frequency MOE and high-frequency MOE takes account for enabling the effective low-frequency and high-frequency information reconstruction. Followed by, the final fusion module dynamically weights high-frequency and low-frequency MOE knowledge to adapt to remote sensing images with significant content variations. Quantitative and qualitative experiments over multiple datasets demonstrate that our method performs the best against other state-of-the-art ones and comprises a strong generalization ability for real-world scenes. Code will be made publicly at \url{https://github.com/alexhe101/FAME-Net}.
PDF

点此查看论文截图

Enhancing RAW-to-sRGB with Decoupled Style Structure in Fourier Domain

Authors:Xuanhua He, Tao Hu, Guoli Wang, Zejin Wang, Run Wang, Qian Zhang, Keyu Yan, Ziyi Chen, Rui Li, Chenjun Xie, Jie Zhang, Man Zhou

RAW to sRGB mapping, which aims to convert RAW images from smartphones into RGB form equivalent to that of Digital Single-Lens Reflex (DSLR) cameras, has become an important area of research. However, current methods often ignore the difference between cell phone RAW images and DSLR camera RGB images, a difference that goes beyond the color matrix and extends to spatial structure due to resolution variations. Recent methods directly rebuild color mapping and spatial structure via shared deep representation, limiting optimal performance. Inspired by Image Signal Processing (ISP) pipeline, which distinguishes image restoration and enhancement, we present a novel Neural ISP framework, named FourierISP. This approach breaks the image down into style and structure within the frequency domain, allowing for independent optimization. FourierISP is comprised of three subnetworks: Phase Enhance Subnet for structural refinement, Amplitude Refine Subnet for color learning, and Color Adaptation Subnet for blending them in a smooth manner. This approach sharpens both color and structure, and extensive evaluations across varied datasets confirm that our approach realizes state-of-the-art results. Code will be available at ~\url{https://github.com/alexhe101/FourierISP}.
PDF

点此查看论文截图

Prompt Decoupling for Text-to-Image Person Re-identification

Authors:Weihao Li, Lei Tan, Pingyang Dai, Yan Zhang

Text-to-image person re-identification (TIReID) aims to retrieve the target person from an image gallery via a textual description query. Recently, pre-trained vision-language models like CLIP have attracted significant attention and have been widely utilized for this task due to their robust capacity for semantic concept learning and rich multi-modal knowledge. However, recent CLIP-based TIReID methods commonly rely on direct fine-tuning of the entire network to adapt the CLIP model for the TIReID task. Although these methods show competitive performance on this topic, they are suboptimal as they necessitate simultaneous domain adaptation and task adaptation. To address this issue, we attempt to decouple these two processes during the training stage. Specifically, we introduce the prompt tuning strategy to enable domain adaptation and propose a two-stage training approach to disentangle domain adaptation from task adaptation. In the first stage, we freeze the two encoders from CLIP and solely focus on optimizing the prompts to alleviate domain gap between the original training data of CLIP and downstream tasks. In the second stage, we maintain the fixed prompts and fine-tune the CLIP model to prioritize capturing fine-grained information, which is more suitable for TIReID task. Finally, we evaluate the effectiveness of our method on three widely used datasets. Compared to the directly fine-tuned approach, our method achieves significant improvements.
PDF

点此查看论文截图

ClassWise-SAM-Adapter: Parameter Efficient Fine-tuning Adapts Segment Anything to SAR Domain for Semantic Segmentation

Authors:Xinyang Pu, Hecheng Jia, Linghao Zheng, Feng Wang, Feng Xu

In the realm of artificial intelligence, the emergence of foundation models, backed by high computing capabilities and extensive data, has been revolutionary. Segment Anything Model (SAM), built on the Vision Transformer (ViT) model with millions of parameters and vast training dataset SA-1B, excels in various segmentation scenarios relying on its significance of semantic information and generalization ability. Such achievement of visual foundation model stimulates continuous researches on specific downstream tasks in computer vision. The ClassWise-SAM-Adapter (CWSAM) is designed to adapt the high-performing SAM for landcover classification on space-borne Synthetic Aperture Radar (SAR) images. The proposed CWSAM freezes most of SAM’s parameters and incorporates lightweight adapters for parameter efficient fine-tuning, and a classwise mask decoder is designed to achieve semantic segmentation task. This adapt-tuning method allows for efficient landcover classification of SAR images, balancing the accuracy with computational demand. In addition, the task specific input module injects low frequency information of SAR images by MLP-based layers to improve the model performance. Compared to conventional state-of-the-art semantic segmentation algorithms by extensive experiments, CWSAM showcases enhanced performance with fewer computing resources, highlighting the potential of leveraging foundational models like SAM for specific downstream tasks in the SAR domain. The source code is available at: https://github.com/xypu98/CWSAM.
PDF

点此查看论文截图

2024-01-05 更新

Towards a Foundation Purchasing Model: Pretrained Generative Autoregression on Transaction Sequences

Authors:Piotr Skalski, David Sutton, Stuart Burrell, Iker Perez, Jason Wong

Machine learning models underpin many modern financial systems for use cases such as fraud detection and churn prediction. Most are based on supervised learning with hand-engineered features, which relies heavily on the availability of labelled data. Large self-supervised generative models have shown tremendous success in natural language processing and computer vision, yet so far they haven’t been adapted to multivariate time series of financial transactions. In this paper, we present a generative pretraining method that can be used to obtain contextualised embeddings of financial transactions. Benchmarks on public datasets demonstrate that it outperforms state-of-the-art self-supervised methods on a range of downstream tasks. We additionally perform large-scale pretraining of an embedding model using a corpus of data from 180 issuing banks containing 5.1 billion transactions and apply it to the card fraud detection problem on hold-out datasets. The embedding model significantly improves value detection rate at high precision thresholds and transfers well to out-of-domain distributions.
PDF

点此查看论文截图

Frequency Domain Modality-invariant Feature Learning for Visible-infrared Person Re-Identification

Authors:Yulin Li, Tianzhu Zhang, Yongdong Zhang

Visible-infrared person re-identification (VI-ReID) is challenging due to the significant cross-modality discrepancies between visible and infrared images. While existing methods have focused on designing complex network architectures or using metric learning constraints to learn modality-invariant features, they often overlook which specific component of the image causes the modality discrepancy problem. In this paper, we first reveal that the difference in the amplitude component of visible and infrared images is the primary factor that causes the modality discrepancy and further propose a novel Frequency Domain modality-invariant feature learning framework (FDMNet) to reduce modality discrepancy from the frequency domain perspective. Our framework introduces two novel modules, namely the Instance-Adaptive Amplitude Filter (IAF) module and the Phrase-Preserving Normalization (PPNorm) module, to enhance the modality-invariant amplitude component and suppress the modality-specific component at both the image- and feature-levels. Extensive experimental results on two standard benchmarks, SYSU-MM01 and RegDB, demonstrate the superior performance of our FDMNet against state-of-the-art methods.
PDF Under review

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录