Vision Transformer


2024-01-04 更新

InternVL: Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks

Authors:Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, Jifeng Dai

The exponential growth of large language models (LLMs) has opened up numerous possibilities for multimodal AGI systems. However, the progress in vision and vision-language foundation models, which are also critical elements of multi-modal AGI, has not kept pace with LLMs. In this work, we design a large-scale vision-language foundation model (InternVL), which scales up the vision foundation model to 6 billion parameters and progressively aligns it with the LLM, using web-scale image-text data from various sources. This model can be broadly applied to and achieve state-of-the-art performance on 32 generic visual-linguistic benchmarks including visual perception tasks such as image-level or pixel-level recognition, vision-language tasks such as zero-shot image/video classification, zero-shot image/video-text retrieval, and link with LLMs to create multi-modal dialogue systems. It has powerful visual capabilities and can be a good alternative to the ViT-22B. We hope that our research could contribute to the development of multi-modal large models. Code and models are available at https://github.com/OpenGVLab/InternVL.
PDF 25 pages, 5 figures, 28 tables

点此查看论文截图

Leveraging Habitat Information for Fine-grained Bird Identification

Authors:Tin Nguyen, Anh Nguyen

Traditional bird classifiers mostly rely on the visual characteristics of birds. Some prior works even train classifiers to be invariant to the background, completely discarding the living environment of birds. Instead, we are the first to explore integrating habitat information, one of the four major cues for identifying birds by ornithologists, into modern bird classifiers. We focus on two leading model types: (1) CNNs and ViTs trained on the downstream bird datasets; and (2) original, multi-modal CLIP. Training CNNs and ViTs with habitat-augmented data results in an improvement of up to +0.83 and +0.23 points on NABirds and CUB-200, respectively. Similarly, adding habitat descriptors to the prompts for CLIP yields a substantial accuracy boost of up to +0.99 and +1.1 points on NABirds and CUB-200, respectively. We find consistent accuracy improvement after integrating habitat features into the image augmentation process and into the textual descriptors of vision-language CLIP classifiers. Code is available at: https://anonymous.4open.science/r/reasoning-8B7E/.
PDF

点此查看论文截图

IQAGPT: Image Quality Assessment with Vision-language and ChatGPT Models

Authors:Zhihao Chen, Bin Hu, Chuang Niu, Tao Chen, Yuxin Li, Hongming Shan, Ge Wang

Large language models (LLMs), such as ChatGPT, have demonstrated impressive capabilities in various tasks and attracted an increasing interest as a natural language interface across many domains. Recently, large vision-language models (VLMs) like BLIP-2 and GPT-4 have been intensively investigated, which learn rich vision-language correlation from image-text pairs. However, despite these developments, the application of LLMs and VLMs in image quality assessment (IQA), particularly in medical imaging, remains to be explored, which is valuable for objective performance evaluation and potential supplement or even replacement of radiologists’ opinions. To this end, this paper introduces IQAGPT, an innovative image quality assessment system integrating an image quality captioning VLM with ChatGPT for generating quality scores and textual reports. First, we build a CT-IQA dataset for training and evaluation, comprising 1,000 CT slices with diverse quality levels professionally annotated. To better leverage the capabilities of LLMs, we convert annotated quality scores into semantically rich text descriptions using a prompt template. Second, we fine-tune the image quality captioning VLM on the CT-IQA dataset to generate quality descriptions. The captioning model fuses the image and text features through cross-modal attention. Third, based on the quality descriptions, users can talk with ChatGPT to rate image quality scores or produce a radiological quality report. Our preliminary results demonstrate the feasibility of assessing image quality with large models. Remarkably, our IQAGPT outperforms GPT-4 and CLIP-IQA, as well as the multi-task classification and regression models that solely rely on images.
PDF 14 pages, 9 figures

点此查看论文截图

ROI-Aware Multiscale Cross-Attention Vision Transformer for Pest Image Identification

Authors:Ga-Eun Kim, Chang-Hwan Son

The pests captured with imaging devices may be relatively small in size compared to the entire images, and complex backgrounds have colors and textures similar to those of the pests, which hinders accurate feature extraction and makes pest identification challenging. The key to pest identification is to create a model capable of detecting regions of interest (ROIs) and transforming them into better ones for attention and discriminative learning. To address these problems, we will study how to generate and update the ROIs via multiscale cross-attention fusion as well as how to be highly robust to complex backgrounds and scale problems. Therefore, we propose a novel ROI-aware multiscale cross-attention vision transformer (ROI-ViT). The proposed ROI-ViT is designed using dual branches, called Pest and ROI branches, which take different types of maps as input: Pest images and ROI maps. To render such ROI maps, ROI generators are built using soft segmentation and a class activation map and then integrated into the ROI-ViT backbone. Additionally, in the dual branch, complementary feature fusion and multiscale hierarchies are implemented via a novel multiscale cross-attention fusion. The class token from the Pest branch is exchanged with the patch tokens from the ROI branch, and vice versa. The experimental results show that the proposed ROI-ViT achieves 81.81%, 99.64%, and 84.66% for IP102, D0, and SauTeg pest datasets, respectively, outperforming state-of-the-art (SOTA) models, such as MViT, PVT, DeiT, Swin-ViT, and EfficientNet. More importantly, for the new challenging dataset IP102(CBSS) that contains only pest images with complex backgrounds and small sizes, the proposed model can maintain high recognition accuracy, whereas that of other SOTA models decrease sharply, demonstrating that our model is more robust to complex background and scale problems.
PDF

点此查看论文截图

Generalizable Visual Reinforcement Learning with Segment Anything Model

Authors:Ziyu Wang, Yanjie Ze, Yifei Sun, Zhecheng Yuan, Huazhe Xu

Learning policies that can generalize to unseen environments is a fundamental challenge in visual reinforcement learning (RL). While most current methods focus on acquiring robust visual representations through auxiliary supervision, pre-training, or data augmentation, the potential of modern vision foundation models remains underleveraged. In this work, we introduce Segment Anything Model for Generalizable visual RL (SAM-G), a novel framework that leverages the promptable segmentation ability of Segment Anything Model (SAM) to enhance the generalization capabilities of visual RL agents. We utilize image features from DINOv2 and SAM to find correspondence as point prompts to SAM, and then SAM produces high-quality masked images for agents directly. Evaluated across 8 DMControl tasks and 3 Adroit tasks, SAM-G significantly improves the visual generalization ability without altering the RL agents’ architecture but merely their observations. Notably, SAM-G achieves 44% and 29% relative improvements on the challenging video hard setting on DMControl and Adroit respectively, compared to state-of-the-art methods. Video and code: https://yanjieze.com/SAM-G/
PDF Project page and code: https://yanjieze.com/SAM-G/

点此查看论文截图

FerKD: Surgical Label Adaptation for Efficient Distillation

Authors:Zhiqiang Shen

We present FerKD, a novel efficient knowledge distillation framework that incorporates partial soft-hard label adaptation coupled with a region-calibration mechanism. Our approach stems from the observation and intuition that standard data augmentations, such as RandomResizedCrop, tend to transform inputs into diverse conditions: easy positives, hard positives, or hard negatives. In traditional distillation frameworks, these transformed samples are utilized equally through their predictive probabilities derived from pretrained teacher models. However, merely relying on prediction values from a pretrained teacher, a common practice in prior studies, neglects the reliability of these soft label predictions. To address this, we propose a new scheme that calibrates the less-confident regions to be the context using softened hard groundtruth labels. Our approach involves the processes of hard regions mining + calibration. We demonstrate empirically that this method can dramatically improve the convergence speed and final accuracy. Additionally, we find that a consistent mixing strategy can stabilize the distributions of soft supervision, taking advantage of the soft labels. As a result, we introduce a stabilized SelfMix augmentation that weakens the variation of the mixed images and corresponding soft labels through mixing similar regions within the same image. FerKD is an intuitive and well-designed learning system that eliminates several heuristics and hyperparameters in former FKD solution. More importantly, it achieves remarkable improvement on ImageNet-1K and downstream tasks. For instance, FerKD achieves 81.2% on ImageNet-1K with ResNet-50, outperforming FKD and FunMatch by remarkable margins. Leveraging better pre-trained weights and larger architectures, our finetuned ViT-G14 even achieves 89.9%. Our code is available at https://github.com/szq0214/FKD/tree/main/FerKD.
PDF ICCV 2023. Github: https://github.com/szq0214/FKD/tree/main/FerKD

点此查看论文截图

Leveraging Open-Vocabulary Diffusion to Camouflaged Instance Segmentation

Authors:Tuan-Anh Vu, Duc Thanh Nguyen, Qing Guo, Binh-Son Hua, Nhat Minh Chung, Ivor W. Tsang, Sai-Kit Yeung

Text-to-image diffusion techniques have shown exceptional capability of producing high-quality images from text descriptions. This indicates that there exists a strong correlation between the visual and textual domains. In addition, text-image discriminative models such as CLIP excel in image labelling from text prompts, thanks to the rich and diverse information available from open concepts. In this paper, we leverage these technical advances to solve a challenging problem in computer vision: camouflaged instance segmentation. Specifically, we propose a method built upon a state-of-the-art diffusion model, empowered by open-vocabulary to learn multi-scale textual-visual features for camouflaged object representations. Such cross-domain representations are desirable in segmenting camouflaged objects where visual cues are subtle to distinguish the objects from the background, especially in segmenting novel objects which are not seen in training. We also develop technically supportive components to effectively fuse cross-domain features and engage relevant features towards respective foreground objects. We validate our method and compare it with existing ones on several benchmark datasets of camouflaged instance segmentation and generic open-vocabulary instance segmentation. Experimental results confirm the advances of our method over existing ones. We will publish our code and pre-trained models to support future research.
PDF This work is under review

点此查看论文截图

Query-Based Knowledge Sharing for Open-Vocabulary Multi-Label Classification

Authors:Xuelin Zhu, Jian Liu, Dongqi Tang, Jiawei Ge, Weijia Liu, Bo Liu, Jiuxin Cao

Identifying labels that did not appear during training, known as multi-label zero-shot learning, is a non-trivial task in computer vision. To this end, recent studies have attempted to explore the multi-modal knowledge of vision-language pre-training (VLP) models by knowledge distillation, allowing to recognize unseen labels in an open-vocabulary manner. However, experimental evidence shows that knowledge distillation is suboptimal and provides limited performance gain in unseen label prediction. In this paper, a novel query-based knowledge sharing paradigm is proposed to explore the multi-modal knowledge from the pretrained VLP model for open-vocabulary multi-label classification. Specifically, a set of learnable label-agnostic query tokens is trained to extract critical vision knowledge from the input image, and further shared across all labels, allowing them to select tokens of interest as visual clues for recognition. Besides, we propose an effective prompt pool for robust label embedding, and reformulate the standard ranking learning into a form of classification to allow the magnitude of feature vectors for matching, which both significantly benefit label recognition. Experimental results show that our framework significantly outperforms state-of-the-art methods on zero-shot task by 5.9% and 4.5% in mAP on the NUS-WIDE and Open Images, respectively.
PDF

点此查看论文截图

Learning Prompt with Distribution-Based Feature Replay for Few-Shot Class-Incremental Learning

Authors:Zitong Huang, Ze Chen, Zhixing Chen, Erjin Zhou, Xinxing Xu, Rick Siow Mong Goh, Yong Liu, Chunmei Feng, Wangmeng Zuo

Few-shot Class-Incremental Learning (FSCIL) aims to continuously learn new classes based on very limited training data without forgetting the old ones encountered. Existing studies solely relied on pure visual networks, while in this paper we solved FSCIL by leveraging the Vision-Language model (e.g., CLIP) and propose a simple yet effective framework, named Learning Prompt with Distribution-based Feature Replay (LP-DiF). We observe that simply using CLIP for zero-shot evaluation can substantially outperform the most influential methods. Then, prompt tuning technique is involved to further improve its adaptation ability, allowing the model to continually capture specific knowledge from each session. To prevent the learnable prompt from forgetting old knowledge in the new session, we propose a pseudo-feature replay approach. Specifically, we preserve the old knowledge of each class by maintaining a feature-level Gaussian distribution with a diagonal covariance matrix, which is estimated by the image features of training images and synthesized features generated from a VAE. When progressing to a new session, pseudo-features are sampled from old-class distributions combined with training images of the current session to optimize the prompt, thus enabling the model to learn new knowledge while retaining old knowledge. Experiments on three prevalent benchmarks, i.e., CIFAR100, mini-ImageNet, CUB-200, and two more challenging benchmarks, i.e., SUN-397 and CUB-200$^*$ proposed in this paper showcase the superiority of LP-DiF, achieving new state-of-the-art (SOTA) in FSCIL. Code is publicly available at https://github.com/1170300714/LP-DiF.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录