Diffusion Models


2023-12-26 更新

DiffPortrait3D: Controllable Diffusion for Zero-Shot Portrait View Synthesis

Authors:Yuming Gu, You Xie, Hongyi Xu, Guoxian Song, Yichun Shi, Di Chang, Jing Yang, Linjie Luo

We present DiffPortrait3D, a conditional diffusion model that is capable of synthesizing 3D-consistent photo-realistic novel views from as few as a single in-the-wild portrait. Specifically, given a single RGB input, we aim to synthesize plausible but consistent facial details rendered from novel camera views with retained both identity and facial expression. In lieu of time-consuming optimization and fine-tuning, our zero-shot method generalizes well to arbitrary face portraits with unposed camera views, extreme facial expressions, and diverse artistic depictions. At its core, we leverage the generative prior of 2D diffusion models pre-trained on large-scale image datasets as our rendering backbone, while the denoising is guided with disentangled attentive control of appearance and camera pose. To achieve this, we first inject the appearance context from the reference image into the self-attention layers of the frozen UNets. The rendering view is then manipulated with a novel conditional control module that interprets the camera pose by watching a condition image of a crossed subject from the same view. Furthermore, we insert a trainable cross-view attention module to enhance view consistency, which is further strengthened with a novel 3D-aware noise generation process during inference. We demonstrate state-of-the-art results both qualitatively and quantitatively on our challenging in-the-wild and multi-view benchmarks.
PDF

点此查看论文截图

Diffusion Models With Learned Adaptive Noise

Authors:Subham Sekhar Sahoo, Aaron Gokaslan, Chris De Sa, Volodymyr Kuleshov

Diffusion models have gained traction as powerful algorithms for synthesizing high-quality images. Central to these algorithms is the diffusion process, which maps data to noise according to equations inspired by thermodynamics and can significantly impact performance. A widely held assumption is that the ELBO objective of a diffusion model is invariant to the noise process (Kingma et al.,2021). In this work, we dispel this assumption — we propose multivariate learned adaptive noise (MuLAN), a learned diffusion process that applies Gaussian noise at different rates across an image. Our method consists of three components — a multivariate noise schedule, instance-conditional diffusion, and auxiliary variables — which ensure that the learning objective is no longer invariant to the choice of the noise schedule as in previous works. Our work is grounded in Bayesian inference and casts the learned diffusion process as an approximate variational posterior that yields a tighter lower bound on marginal likelihood. Empirically, MuLAN sets a new state-of-the-art in density estimation on CIFAR-10 and ImageNet compared to classical diffusion. Code is available at https://github.com/s-sahoo/MuLAN
PDF

点此查看论文截图

Repaint123: Fast and High-quality One Image to 3D Generation with Progressive Controllable 2D Repainting

Authors:Junwu Zhang, Zhenyu Tang, Yatian Pang, Xinhua Cheng, Peng Jin, Yida Wei, Munan Ning, Li Yuan

Recent one image to 3D generation methods commonly adopt Score Distillation Sampling (SDS). Despite the impressive results, there are multiple deficiencies including multi-view inconsistency, over-saturated and over-smoothed textures, as well as the slow generation speed. To address these deficiencies, we present Repaint123 to alleviate multi-view bias as well as texture degradation and speed up the generation process. The core idea is to combine the powerful image generation capability of the 2D diffusion model and the texture alignment ability of the repainting strategy for generating high-quality multi-view images with consistency. We further propose visibility-aware adaptive repainting strength for overlap regions to enhance the generated image quality in the repainting process. The generated high-quality and multi-view consistent images enable the use of simple Mean Square Error (MSE) loss for fast 3D content generation. We conduct extensive experiments and show that our method has a superior ability to generate high-quality 3D content with multi-view consistency and fine textures in 2 minutes from scratch. Our webpage is available at https://junwuzhang19.github.io/repaint123/.
PDF Project page: https://junwuzhang19.github.io/repaint123/

点此查看论文截图

Diff-Oracle: Diffusion Model for Oracle Character Generation with Controllable Styles and Contents

Authors:Jing Li, Qiu-Feng Wang, Kaizhu Huang, Rui Zhang, Siyuan Wang

Deciphering the oracle bone script plays a significant role in Chinese archaeology and philology. However, it is significantly challenging due to the scarcity of oracle character images. To overcome this issue, we propose Diff-Oracle, based on diffusion models (DMs), to generate sufficient controllable oracle characters. In contrast to most DMs that rely on text prompts, we incorporate a style encoder to control style information during the generation process. This encoder extracts style prompts from existing oracle character images, where style details are converted from a CLIP model into a text embedding format. Inspired by ControlNet, we introduce a content encoder to capture desired content information from content images, ensuring the fidelity of character glyphs. To train Diff-Oracle effectively, we propose to obtain pixel-level paired oracle character images (i.e., style and content images) by a pre-trained image-to-image translation model. Extensive qualitative and quantitative experiments conducted on two benchmark datasets, Oracle-241 and OBC306, demonstrate that our Diff-Oracle outperforms existing generative methods in terms of image generation, further enhancing recognition accuracy. Source codes will be available.
PDF

点此查看论文截图

Free-Editor: Zero-shot Text-driven 3D Scene Editing

Authors:Nazmul Karim, Umar Khalid, Hasan Iqbal, Jing Hua, Chen Chen

Text-to-Image (T2I) diffusion models have gained popularity recently due to their multipurpose and easy-to-use nature, e.g. image and video generation as well as editing. However, training a diffusion model specifically for 3D scene editing is not straightforward due to the lack of large-scale datasets. To date, editing 3D scenes requires either re-training the model to adapt to various 3D edited scenes or design-specific methods for each special editing type. Furthermore, state-of-the-art (SOTA) methods require multiple synchronized edited images from the same scene to facilitate the scene editing. Due to the current limitations of T2I models, it is very challenging to apply consistent editing effects to multiple images, i.e. multi-view inconsistency in editing. This in turn compromises the desired 3D scene editing performance if these images are used. In our work, we propose a novel training-free 3D scene editing technique, Free-Editor, which allows users to edit 3D scenes without further re-training the model during test time. Our proposed method successfully avoids the multi-view style inconsistency issue in SOTA methods with the help of a “single-view editing” scheme. Specifically, we show that editing a particular 3D scene can be performed by only modifying a single view. To this end, we introduce an Edit Transformer that enforces intra-view consistency and inter-view style transfer by utilizing self- and cross-attention, respectively. Since it is no longer required to re-train the model and edit every view in a scene, the editing time, as well as memory resources, are reduced significantly, e.g., the runtime being $\sim \textbf{20} \times$ faster than SOTA. We have conducted extensive experiments on a wide range of benchmark datasets and achieve diverse editing capabilities with our proposed technique.
PDF

点此查看论文截图

DreamTuner: Single Image is Enough for Subject-Driven Generation

Authors:Miao Hua, Jiawei Liu, Fei Ding, Wei Liu, Jie Wu, Qian He

Diffusion-based models have demonstrated impressive capabilities for text-to-image generation and are expected for personalized applications of subject-driven generation, which require the generation of customized concepts with one or a few reference images. However, existing methods based on fine-tuning fail to balance the trade-off between subject learning and the maintenance of the generation capabilities of pretrained models. Moreover, other methods that utilize additional image encoders tend to lose important details of the subject due to encoding compression. To address these challenges, we propose DreamTurner, a novel method that injects reference information from coarse to fine to achieve subject-driven image generation more effectively. DreamTurner introduces a subject-encoder for coarse subject identity preservation, where the compressed general subject features are introduced through an attention layer before visual-text cross-attention. We then modify the self-attention layers within pretrained text-to-image models to self-subject-attention layers to refine the details of the target subject. The generated image queries detailed features from both the reference image and itself in self-subject-attention. It is worth emphasizing that self-subject-attention is an effective, elegant, and training-free method for maintaining the detailed features of customized subjects and can serve as a plug-and-play solution during inference. Finally, with additional subject-driven fine-tuning, DreamTurner achieves remarkable performance in subject-driven image generation, which can be controlled by a text or other conditions such as pose. For further details, please visit the project page at https://dreamtuner-diffusion.github.io/.
PDF

点此查看论文截图

Align Your Gaussians: Text-to-4D with Dynamic 3D Gaussians and Composed Diffusion Models

Authors:Huan Ling, Seung Wook Kim, Antonio Torralba, Sanja Fidler, Karsten Kreis

Text-guided diffusion models have revolutionized image and video generation and have also been successfully used for optimization-based 3D object synthesis. Here, we instead focus on the underexplored text-to-4D setting and synthesize dynamic, animated 3D objects using score distillation methods with an additional temporal dimension. Compared to previous work, we pursue a novel compositional generation-based approach, and combine text-to-image, text-to-video, and 3D-aware multiview diffusion models to provide feedback during 4D object optimization, thereby simultaneously enforcing temporal consistency, high-quality visual appearance and realistic geometry. Our method, called Align Your Gaussians (AYG), leverages dynamic 3D Gaussian Splatting with deformation fields as 4D representation. Crucial to AYG is a novel method to regularize the distribution of the moving 3D Gaussians and thereby stabilize the optimization and induce motion. We also propose a motion amplification mechanism as well as a new autoregressive synthesis scheme to generate and combine multiple 4D sequences for longer generation. These techniques allow us to synthesize vivid dynamic scenes, outperform previous work qualitatively and quantitatively and achieve state-of-the-art text-to-4D performance. Due to the Gaussian 4D representation, different 4D animations can be seamlessly combined, as we demonstrate. AYG opens up promising avenues for animation, simulation and digital content creation as well as synthetic data generation.
PDF Project page: https://research.nvidia.com/labs/toronto-ai/AlignYourGaussians/

点此查看论文截图

Paint3D: Paint Anything 3D with Lighting-Less Texture Diffusion Models

Authors:Xianfang Zeng, Xin Chen, Zhongqi Qi, Wen Liu, Zibo Zhao, Zhibin Wang, Bin Fu, Yong Liu, Gang Yu

This paper presents Paint3D, a novel coarse-to-fine generative framework that is capable of producing high-resolution, lighting-less, and diverse 2K UV texture maps for untextured 3D meshes conditioned on text or image inputs. The key challenge addressed is generating high-quality textures without embedded illumination information, which allows the textures to be re-lighted or re-edited within modern graphics pipelines. To achieve this, our method first leverages a pre-trained depth-aware 2D diffusion model to generate view-conditional images and perform multi-view texture fusion, producing an initial coarse texture map. However, as 2D models cannot fully represent 3D shapes and disable lighting effects, the coarse texture map exhibits incomplete areas and illumination artifacts. To resolve this, we train separate UV Inpainting and UVHD diffusion models specialized for the shape-aware refinement of incomplete areas and the removal of illumination artifacts. Through this coarse-to-fine process, Paint3D can produce high-quality 2K UV textures that maintain semantic consistency while being lighting-less, significantly advancing the state-of-the-art in texturing 3D objects.
PDF Project Website: https://github.com/OpenTexture/Paint3D

点此查看论文截图

Controllable 3D Face Generation with Conditional Style Code Diffusion

Authors:Xiaolong Shen, Jianxin Ma, Chang Zhou, Zongxin Yang

Generating photorealistic 3D faces from given conditions is a challenging task. Existing methods often rely on time-consuming one-by-one optimization approaches, which are not efficient for modeling the same distribution content, e.g., faces. Additionally, an ideal controllable 3D face generation model should consider both facial attributes and expressions. Thus we propose a novel approach called TEx-Face(TExt & Expression-to-Face) that addresses these challenges by dividing the task into three components, i.e., 3D GAN Inversion, Conditional Style Code Diffusion, and 3D Face Decoding. For 3D GAN inversion, we introduce two methods which aim to enhance the representation of style codes and alleviate 3D inconsistencies. Furthermore, we design a style code denoiser to incorporate multiple conditions into the style code and propose a data augmentation strategy to address the issue of insufficient paired visual-language data. Extensive experiments conducted on FFHQ, CelebA-HQ, and CelebA-Dialog demonstrate the promising performance of our TEx-Face in achieving the efficient and controllable generation of photorealistic 3D faces. The code will be available at https://github.com/sxl142/TEx-Face.
PDF Accepted by AAAI 2024

点此查看论文截图

Carve3D: Improving Multi-view Reconstruction Consistency for Diffusion Models with RL Finetuning

Authors:Desai Xie, Jiahao Li, Hao Tan, Xin Sun, Zhixin Shu, Yi Zhou, Sai Bi, Sören Pirk, Arie E. Kaufman

Recent advancements in the text-to-3D task leverage finetuned text-to-image diffusion models to generate multi-view images, followed by NeRF reconstruction. Yet, existing supervised finetuned (SFT) diffusion models still suffer from multi-view inconsistency and the resulting NeRF artifacts. Although training longer with SFT improves consistency, it also causes distribution shift, which reduces diversity and realistic details. We argue that the SFT of multi-view diffusion models resembles the instruction finetuning stage of the LLM alignment pipeline and can benefit from RL finetuning (RLFT) methods. Essentially, RLFT methods optimize models beyond their SFT data distribution by using their own outputs, effectively mitigating distribution shift. To this end, we introduce Carve3D, a RLFT method coupled with the Multi-view Reconstruction Consistency (MRC) metric, to improve the consistency of multi-view diffusion models. To compute MRC on a set of multi-view images, we compare them with their corresponding renderings of the reconstructed NeRF at the same viewpoints. We validate the robustness of MRC with extensive experiments conducted under controlled inconsistency levels. We enhance the base RLFT algorithm to stabilize the training process, reduce distribution shift, and identify scaling laws. Through qualitative and quantitative experiments, along with a user study, we demonstrate Carve3D’s improved multi-view consistency, the resulting superior NeRF reconstruction quality, and minimal distribution shift compared to longer SFT. Project webpage: https://desaixie.github.io/carve-3d.
PDF Project webpage: https://desaixie.github.io/carve-3d

点此查看论文截图

HD-Painter: High-Resolution and Prompt-Faithful Text-Guided Image Inpainting with Diffusion Models

Authors:Hayk Manukyan, Andranik Sargsyan, Barsegh Atanyan, Zhangyang Wang, Shant Navasardyan, Humphrey Shi

Recent progress in text-guided image inpainting, based on the unprecedented success of text-to-image diffusion models, has led to exceptionally realistic and visually plausible results. However, there is still significant potential for improvement in current text-to-image inpainting models, particularly in better aligning the inpainted area with user prompts and performing high-resolution inpainting. Therefore, in this paper we introduce HD-Painter, a completely training-free approach that accurately follows to prompts and coherently scales to high-resolution image inpainting. To this end, we design the Prompt-Aware Introverted Attention (PAIntA) layer enhancing self-attention scores by prompt information and resulting in better text alignment generations. To further improve the prompt coherence we introduce the Reweighting Attention Score Guidance (RASG) mechanism seamlessly integrating a post-hoc sampling strategy into general form of DDIM to prevent out-of-distribution latent shifts. Moreover, HD-Painter allows extension to larger scales by introducing a specialized super-resolution technique customized for inpainting, enabling the completion of missing regions in images of up to 2K resolution. Our experiments demonstrate that HD-Painter surpasses existing state-of-the-art approaches qualitatively and quantitatively, achieving an impressive generation accuracy improvement of 61.4% vs 51.9%. We will make the codes publicly available at: https://github.com/Picsart-AI-Research/HD-Painter
PDF

点此查看论文截图

Neural Point Cloud Diffusion for Disentangled 3D Shape and Appearance Generation

Authors:Philipp Schröppel, Christopher Wewer, Jan Eric Lenssen, Eddy Ilg, Thomas Brox

Controllable generation of 3D assets is important for many practical applications like content creation in movies, games and engineering, as well as in AR/VR. Recently, diffusion models have shown remarkable results in generation quality of 3D objects. However, none of the existing models enable disentangled generation to control the shape and appearance separately. For the first time, we present a suitable representation for 3D diffusion models to enable such disentanglement by introducing a hybrid point cloud and neural radiance field approach. We model a diffusion process over point positions jointly with a high-dimensional feature space for a local density and radiance decoder. While the point positions represent the coarse shape of the object, the point features allow modeling the geometry and appearance details. This disentanglement enables us to sample both independently and therefore to control both separately. Our approach sets a new state of the art in generation compared to previous disentanglement-capable methods by reduced FID scores of 30-90% and is on-par with other non disentanglement-capable state-of-the art methods.
PDF

点此查看论文截图

Diffusion Reward: Learning Rewards via Conditional Video Diffusion

Authors:Tao Huang, Guangqi Jiang, Yanjie Ze, Huazhe Xu

Learning rewards from expert videos offers an affordable and effective solution to specify the intended behaviors for reinforcement learning tasks. In this work, we propose Diffusion Reward, a novel framework that learns rewards from expert videos via conditional video diffusion models for solving complex visual RL problems. Our key insight is that lower generative diversity is observed when conditioned on expert trajectories. Diffusion Reward is accordingly formalized by the negative of conditional entropy that encourages productive exploration of expert-like behaviors. We show the efficacy of our method over 10 robotic manipulation tasks from MetaWorld and Adroit with visual input and sparse reward. Moreover, Diffusion Reward could even solve unseen tasks successfully and effectively, largely surpassing baseline methods. Project page and code: https://diffusion-reward.github.io/.
PDF Project page and code: https://diffusion-reward.github.io/

点此查看论文截图

DreamDistribution: Prompt Distribution Learning for Text-to-Image Diffusion Models

Authors:Brian Nlong Zhao, Yuhang Xiao, Jiashu Xu, Xinyang Jiang, Yifan Yang, Dongsheng Li, Laurent Itti, Vibhav Vineet, Yunhao Ge

The popularization of Text-to-Image (T2I) diffusion models enables the generation of high-quality images from text descriptions. However, generating diverse customized images with reference visual attributes remains challenging. This work focuses on personalizing T2I diffusion models at a more abstract concept or category level, adapting commonalities from a set of reference images while creating new instances with sufficient variations. We introduce a solution that allows a pretrained T2I diffusion model to learn a set of soft prompts, enabling the generation of novel images by sampling prompts from the learned distribution. These prompts offer text-guided editing capabilities and additional flexibility in controlling variation and mixing between multiple distributions. We also show the adaptability of the learned prompt distribution to other tasks, such as text-to-3D. Finally we demonstrate effectiveness of our approach through quantitative analysis including automatic evaluation and human assessment. Project website: https://briannlongzhao.github.io/DreamDistribution
PDF

点此查看论文截图

Fast Diffusion-Based Counterfactuals for Shortcut Removal and Generation

Authors:Nina Weng, Paraskevas Pegios, Aasa Feragen, Eike Petersen, Siavash Bigdeli

Shortcut learning is when a model — e.g. a cardiac disease classifier — exploits correlations between the target label and a spurious shortcut feature, e.g. a pacemaker, to predict the target label based on the shortcut rather than real discriminative features. This is common in medical imaging, where treatment and clinical annotations correlate with disease labels, making them easy shortcuts to predict disease. We propose a novel detection and quantification of the impact of potential shortcut features via a fast diffusion-based counterfactual image generation that can synthetically remove or add shortcuts. Via a novel inpainting-based modification we spatially limit the changes made with no extra inference step, encouraging the removal of spatially constrained shortcut features while ensuring that the shortcut-free counterfactuals preserve their remaining image features to a high degree. Using these, we assess how shortcut features influence model predictions. This is enabled by our second contribution: An efficient diffusion-based counterfactual explanation method with significant inference speed-up at comparable image quality as state-of-the-art. We confirm this on two large chest X-ray datasets, a skin lesion dataset, and CelebA.
PDF

点此查看论文截图

Tuning-Free Inversion-Enhanced Control for Consistent Image Editing

Authors:Xiaoyue Duan, Shuhao Cui, Guoliang Kang, Baochang Zhang, Zhengcong Fei, Mingyuan Fan, Junshi Huang

Consistent editing of real images is a challenging task, as it requires performing non-rigid edits (e.g., changing postures) to the main objects in the input image without changing their identity or attributes. To guarantee consistent attributes, some existing methods fine-tune the entire model or the textual embedding for structural consistency, but they are time-consuming and fail to perform non-rigid edits. Other works are tuning-free, but their performances are weakened by the quality of Denoising Diffusion Implicit Model (DDIM) reconstruction, which often fails in real-world scenarios. In this paper, we present a novel approach called Tuning-free Inversion-enhanced Control (TIC), which directly correlates features from the inversion process with those from the sampling process to mitigate the inconsistency in DDIM reconstruction. Specifically, our method effectively obtains inversion features from the key and value features in the self-attention layers, and enhances the sampling process by these inversion features, thus achieving accurate reconstruction and content-consistent editing. To extend the applicability of our method to general editing scenarios, we also propose a mask-guided attention concatenation strategy that combines contents from both the inversion and the naive DDIM editing processes. Experiments show that the proposed method outperforms previous works in reconstruction and consistent editing, and produces impressive results in various settings.
PDF

点此查看论文截图

Harnessing Diffusion Models for Visual Perception with Meta Prompts

Authors:Qiang Wan, Zilong Huang, Bingyi Kang, Jiashi Feng, Li Zhang

The issue of generative pretraining for vision models has persisted as a long-standing conundrum. At present, the text-to-image (T2I) diffusion model demonstrates remarkable proficiency in generating high-definition images matching textual inputs, a feat made possible through its pre-training on large-scale image-text pairs. This leads to a natural inquiry: can diffusion models be utilized to tackle visual perception tasks? In this paper, we propose a simple yet effective scheme to harness a diffusion model for visual perception tasks. Our key insight is to introduce learnable embeddings (meta prompts) to the pre-trained diffusion models to extract proper features for perception. The effect of meta prompts are two-fold. First, as a direct replacement of the text embeddings in the T2I models, it can activate task-relevant features during feature extraction. Second, it will be used to re-arrange the extracted features to ensures that the model focuses on the most pertinent features for the task on hand. Additionally, we design a recurrent refinement training strategy that fully leverages the property of diffusion models, thereby yielding stronger visual features. Extensive experiments across various benchmarks validate the effectiveness of our approach. Our approach achieves new performance records in depth estimation tasks on NYU depth V2 and KITTI, and in semantic segmentation task on CityScapes. Concurrently, the proposed method attains results comparable to the current state-of-the-art in semantic segmentation on ADE20K and pose estimation on COCO datasets, further exemplifying its robustness and versatility.
PDF

点此查看论文截图

BrainVis: Exploring the Bridge between Brain and Visual Signals via Image Reconstruction

Authors:Honghao Fu, Zhiqi Shen, Jing Jih Chin, Hao Wang

Analyzing and reconstructing visual stimuli from brain signals effectively advances understanding of the human visual system. However, the EEG signals are complex and contain a amount of noise. This leads to substantial limitations in existing works of visual stimuli reconstruction from EEG, such as difficulties in aligning EEG embeddings with the fine-grained semantic information and a heavy reliance on additional large self-collected dataset for training. To address these challenges, we propose a novel approach called BrainVis. Firstly, we divide the EEG signals into various units and apply a self-supervised approach on them to obtain EEG time-domain features, in an attempt to ease the training difficulty. Additionally, we also propose to utilize the frequency-domain features to enhance the EEG representations. Then, we simultaneously align EEG time-frequency embeddings with the interpolation of the coarse and fine-grained semantics in the CLIP space, to highlight the primary visual components and reduce the cross-modal alignment difficulty. Finally, we adopt the cascaded diffusion models to reconstruct images. Our proposed BrainVis outperforms state of the arts in both semantic fidelity reconstruction and generation quality. Notably, we reduce the training data scale to 10% of the previous work.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录