2023-12-25 更新
On Partial Optimal Transport: Revising the Infeasibility of Sinkhorn and Efficient Gradient Methods
Authors:Anh Duc Nguyen, Tuan Dung Nguyen, Quang Minh Nguyen, Hoang H. Nguyen, Lam M. Nguyen, Kim-Chuan Toh
This paper studies the Partial Optimal Transport (POT) problem between two unbalanced measures with at most $n$ supports and its applications in various AI tasks such as color transfer or domain adaptation. There is hence the need for fast approximations of POT with increasingly large problem sizes in arising applications. We first theoretically and experimentally investigate the infeasibility of the state-of-the-art Sinkhorn algorithm for POT due to its incompatible rounding procedure, which consequently degrades its qualitative performance in real world applications like point-cloud registration. To this end, we propose a novel rounding algorithm for POT, and then provide a feasible Sinkhorn procedure with a revised computation complexity of $\mathcal{\widetilde O}(n^2/\varepsilon^4)$. Our rounding algorithm also permits the development of two first-order methods to approximate the POT problem. The first algorithm, Adaptive Primal-Dual Accelerated Gradient Descent (APDAGD), finds an $\varepsilon$-approximate solution to the POT problem in $\mathcal{\widetilde O}(n^{2.5}/\varepsilon)$, which is better in $\varepsilon$ than revised Sinkhorn. The second method, Dual Extrapolation, achieves the computation complexity of $\mathcal{\widetilde O}(n^2/\varepsilon)$, thereby being the best in the literature. We further demonstrate the flexibility of POT compared to standard OT as well as the practicality of our algorithms on real applications where two marginal distributions are unbalanced.
PDF Accepted to AAAI 2024
点此查看论文截图
Benchmarking Multi-Agent Preference-based Reinforcement Learning for Human-AI Teaming
Authors:Siddhant Bhambri, Mudit Verma, Anil Murthy, Subbarao Kambhampati
Preference-based Reinforcement Learning (PbRL) is an active area of research, and has made significant strides in single-agent actor and in observer human-in-the-loop scenarios. However, its application within the co-operative multi-agent RL frameworks, where humans actively participate and express preferences for agent behavior, remains largely uncharted. We consider a two-agent (Human-AI) cooperative setup where both the agents are rewarded according to human’s reward function for the team. However, the agent does not have access to it, and instead, utilizes preference-based queries to elicit its objectives and human’s preferences for the robot in the human-robot team. We introduce the notion of Human-Flexibility, i.e. whether the human partner is amenable to multiple team strategies, with a special case being Specified Orchestration where the human has a single team policy in mind (most constrained case). We propose a suite of domains to study PbRL for Human-AI cooperative setup which explicitly require forced cooperation. Adapting state-of-the-art single-agent PbRL algorithms to our two-agent setting, we conduct a comprehensive benchmarking study across our domain suite. Our findings highlight the challenges associated with high degree of Human-Flexibility and the limited access to the human’s envisioned policy in PbRL for Human-AI cooperation. Notably, we observe that PbRL algorithms exhibit effective performance exclusively in the case of Specified Orchestration which can be seen as an upper bound PbRL performance for future research.
PDF
点此查看论文截图
AdapTraj: A Multi-Source Domain Generalization Framework for Multi-Agent Trajectory Prediction
Authors:Tangwen Qian, Yile Chen, Gao Cong, Yongjun Xu, Fei Wang
Multi-agent trajectory prediction, as a critical task in modeling complex interactions of objects in dynamic systems, has attracted significant research attention in recent years. Despite the promising advances, existing studies all follow the assumption that data distribution observed during model learning matches that encountered in real-world deployments. However, this assumption often does not hold in practice, as inherent distribution shifts might exist in the mobility patterns for deployment environments, thus leading to poor domain generalization and performance degradation. Consequently, it is appealing to leverage trajectories from multiple source domains to mitigate such discrepancies for multi-agent trajectory prediction task. However, the development of multi-source domain generalization in this task presents two notable issues: (1) negative transfer; (2) inadequate modeling for external factors. To address these issues, we propose a new causal formulation to explicitly model four types of features: domain-invariant and domain-specific features for both the focal agent and neighboring agents. Building upon the new formulation, we propose AdapTraj, a multi-source domain generalization framework specifically tailored for multi-agent trajectory prediction. AdapTraj serves as a plug-and-play module that is adaptable to a variety of models. Extensive experiments on four datasets with different domains demonstrate that AdapTraj consistently outperforms other baselines by a substantial margin.
PDF Accepted by ICDE 2024