Domain Adaptation


2023-12-13 更新

Unsupervised Video Domain Adaptation with Masked Pre-Training and Collaborative Self-Training

Authors:Arun Reddy, William Paul, Corban Rivera, Ketul Shah, Celso M. de Melo, Rama Chellappa

In this work, we tackle the problem of unsupervised domain adaptation (UDA) for video action recognition. Our approach, which we call UNITE, uses an image teacher model to adapt a video student model to the target domain. UNITE first employs self-supervised pre-training to promote discriminative feature learning on target domain videos using a teacher-guided masked distillation objective. We then perform self-training on masked target data, using the video student model and image teacher model together to generate improved pseudolabels for unlabeled target videos. Our self-training process successfully leverages the strengths of both models to achieve strong transfer performance across domains. We evaluate our approach on multiple video domain adaptation benchmarks and observe significant improvements upon previously reported results.
PDF 13 pages, 4 figures

点此查看论文截图

Adaptive Weighted Co-Learning for Cross-Domain Few-Shot Learning

Authors:Abdullah Alchihabi, Marzi Heidari, Yuhong Guo

Due to the availability of only a few labeled instances for the novel target prediction task and the significant domain shift between the well annotated source domain and the target domain, cross-domain few-shot learning (CDFSL) induces a very challenging adaptation problem. In this paper, we propose a simple Adaptive Weighted Co-Learning (AWCoL) method to address the CDFSL challenge by adapting two independently trained source prototypical classification models to the target task in a weighted co-learning manner. The proposed method deploys a weighted moving average prediction strategy to generate probabilistic predictions from each model, and then conducts adaptive co-learning by jointly fine-tuning the two models in an alternating manner based on the pseudo-labels and instance weights produced from the predictions. Moreover, a negative pseudo-labeling regularizer is further deployed to improve the fine-tuning process by penalizing false predictions. Comprehensive experiments are conducted on multiple benchmark datasets and the empirical results demonstrate that the proposed method produces state-of-the-art CDFSL performance.
PDF

点此查看论文截图

Combining inherent knowledge of vision-language models with unsupervised domain adaptation through self-knowledge distillation

Authors:Thomas Westfechtel, Dexuan Zhang, Tatsuya Harada

Unsupervised domain adaptation (UDA) tries to overcome the tedious work of labeling data by leveraging a labeled source dataset and transferring its knowledge to a similar but different target dataset. On the other hand, current vision-language models exhibit astonishing zero-shot prediction capabilities. In this work, we combine knowledge gained through UDA with the inherent knowledge of vision-language models. In a first step, we generate the zero-shot predictions of the source and target dataset using the vision-language model. Since zero-shot predictions usually exhibit a large entropy, meaning that the class probabilities are rather evenly distributed, we first adjust the distribution to accentuate the winning probabilities. This is done using both source and target data to keep the relative confidence between source and target data. We then employ a conventional DA method, to gain the knowledge from the source dataset, in combination with self-knowledge distillation, to maintain the inherent knowledge of the vision-language model. We further combine our method with a gradual source domain expansion strategy (GSDE) and show that this strategy can also benefit by including zero-shot predictions. We conduct experiments and ablation studies on three benchmarks (OfficeHome, VisDA, and DomainNet) and outperform state-of-the-art methods. We further show in ablation studies the contributions of different parts of our algorithm.
PDF

点此查看论文截图

DARNet: Bridging Domain Gaps in Cross-Domain Few-Shot Segmentation with Dynamic Adaptation

Authors:Haoran Fan, Qi Fan, Maurice Pagnucco, Yang Song

Few-shot segmentation (FSS) aims to segment novel classes in a query image by using only a small number of supporting images from base classes. However, in cross-domain few-shot segmentation (CD-FSS), leveraging features from label-rich domains for resource-constrained domains poses challenges due to domain discrepancies. This work presents a Dynamically Adaptive Refine (DARNet) method that aims to balance generalization and specificity for CD-FSS. Our method includes the Channel Statistics Disruption (CSD) strategy, which perturbs feature channel statistics in the source domain, bolstering generalization to unknown target domains. Moreover, recognizing the variability across target domains, an Adaptive Refine Self-Matching (ARSM) method is also proposed to adjust the matching threshold and dynamically refine the prediction result with the self-matching method, enhancing accuracy. We also present a Test-Time Adaptation (TTA) method to refine the model’s adaptability to diverse feature distributions. Our approach demonstrates superior performance against state-of-the-art methods in CD-FSS tasks.
PDF

点此查看论文截图

Subject-Based Domain Adaptation for Facial Expression Recognition

Authors:Muhammad Osama Zeeshan, Muhammad Haseeb Aslam, Soufiane Belharbi, Alessandro L. Koerich, Marco Pedersoli, Simon Bacon, Eric Granger

Adapting a deep learning (DL) model to a specific target individual is a challenging task in facial expression recognition (FER) that may be achieved using unsupervised domain adaptation (UDA) methods. Although several UDA methods have been proposed to adapt deep FER models across source and target data sets, multiple subject-specific source domains are needed to accurately represent the intra- and inter-person variability in subject-based adaption. In this paper, we consider the setting where domains correspond to individuals, not entire datasets. Unlike UDA, multi-source domain adaptation (MSDA) methods can leverage multiple source datasets to improve the accuracy and robustness of the target model. However, previous methods for MSDA adapt image classification models across datasets and do not scale well to a larger number of source domains. In this paper, a new MSDA method is introduced for subject-based domain adaptation in FER. It efficiently leverages information from multiple source subjects (labeled source domain data) to adapt a deep FER model to a single target individual (unlabeled target domain data). During adaptation, our Subject-based MSDA first computes a between-source discrepancy loss to mitigate the domain shift among data from several source subjects. Then, a new strategy is employed to generate augmented confident pseudo-labels for the target subject, allowing a reduction in the domain shift between source and target subjects. Experiments\footnote{\textcolor{red}{\textbf{Supplementary material} contains our code, which will be made public, and additional experimental results.}} on the challenging BioVid heat and pain dataset (PartA) with 87 subjects shows that our Subject-based MSDA can outperform state-of-the-art methods yet scale well to multiple subject-based source domains.
PDF

点此查看论文截图

DG-TTA: Out-of-domain medical image segmentation through Domain Generalization and Test-Time Adaptation

Authors:Christian Weihsbach, Christian N. Kruse, Alexander Bigalke, Mattias P. Heinrich

Applying pre-trained medical segmentation models on out-of-domain images often yields predictions of insufficient quality. Several strategies have been proposed to maintain model performance, such as finetuning or unsupervised- and source-free domain adaptation. These strategies set restrictive requirements for data availability. In this study, we propose to combine domain generalization and test-time adaptation to create a highly effective approach for reusing pre-trained models in unseen target domains. Domain-generalized pre-training on source data is used to obtain the best initial performance in the target domain. We introduce the MIND descriptor previously used in image registration tasks as a further technique to achieve generalization and present superior performance for small-scale datasets compared to existing approaches. At test-time, high-quality segmentation for every single unseen scan is ensured by optimizing the model weights for consistency given different image augmentations. That way, our method enables separate use of source and target data and thus removes current data availability barriers. Moreover, the presented method is highly modular as it does not require specific model architectures or prior knowledge of involved domains and labels. We demonstrate this by integrating it into the nnUNet, which is currently the most popular and accurate framework for medical image segmentation. We employ multiple datasets covering abdominal, cardiac, and lumbar spine scans and compose several out-of-domain scenarios in this study. We demonstrate that our method, combined with pre-trained whole-body CT models, can effectively segment MR images with high accuracy in all of the aforementioned scenarios. Open-source code can be found here: https://github.com/multimodallearning/DG-TTA
PDF This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible

点此查看论文截图

Revisiting Graph-based Fraud Detection in Sight of Heterophily and Spectrum

Authors:Fan Xu, Nan Wang, Hao Wu, Xuezhi Wen, Xibin Zhao

Graph-based fraud detection (GFD) can be regarded as a challenging semi-supervised node binary classification task. In recent years, Graph Neural Networks(GNN) have been widely applied to GFD, characterizing the anomalous possibility of a node by aggregating neighbor information. However, fraud graphs are inherently heterophilic, thus most of GNNs perform poorly due to their assumption of homophily. In addition, due to the existence of heterophily and class imbalance problem, the existing models do not fully utilize the precious node label information. To address the above issues, this paper proposes a semi-supervised GNN-based fraud detector SEC-GFD. This detector includes a hybrid filtering module and a local environmental constraint module, the two modules are utilized to solve heterophily and label utilization problem respectively. The first module starts from the perspective of the spectral domain, and solves the heterophily problem to a certain extent. Specifically, it divides the spectrum into multiple mixed frequency bands according to the correlation between spectrum energy distribution and heterophily. Then in order to make full use of the node label information, a local environmental constraint module is adaptively designed. The comprehensive experimental results on four real-world fraud detection datasets show that SEC-GFD outperforms other competitive graph-based fraud detectors.
PDF

点此查看论文截图

Learning to See Low-Light Images via Feature Domain Adaptation

Authors:Qirui Yang, cheng qihua, Huanjing Yue, Le Zhang, Yihao Liu, Jingyu Yang

Raw low light image enhancement (LLIE) has achieved much better performance than the sRGB domain enhancement methods due to the merits of raw data. However, the ambiguity between noisy to clean and raw to sRGB mappings may mislead the single-stage enhancement networks. The two-stage networks avoid ambiguity by decoupling the two mappings but usually have large computing complexity. To solve this problem, we propose a single-stage network empowered by Feature Domain Adaptation (FDA) to decouple the denoising and color mapping tasks in raw LLIE. The denoising encoder is supervised by the clean raw image, and then the denoised features are adapted for the color mapping task by an FDA module. We propose a Lineformer to serve as the FDA, which can well explore the global and local correlations with fewer line buffers (friendly to the line-based imaging process). During inference, the raw supervision branch is removed. In this way, our network combines the advantage of a two-stage enhancement process with the efficiency of single-stage inference. Experiments on four benchmark datasets demonstrate that our method achieves state-of-the-art performance with fewer computing costs (60\% FLOPs of the two-stage method DNF). \textit{Our codes will be released after the acceptance of this work.}
PDF

点此查看论文截图

ADOD: Adaptive Domain-Aware Object Detection with Residual Attention for Underwater Environments

Authors:Lyes Saad Saoud, Zhenwei Niu, Atif Sultan, Lakmal Seneviratne, Irfan Hussain

This research presents ADOD, a novel approach to address domain generalization in underwater object detection. Our method enhances the model’s ability to generalize across diverse and unseen domains, ensuring robustness in various underwater environments. The first key contribution is Residual Attention YOLOv3, a novel variant of the YOLOv3 framework empowered by residual attention modules. These modules enable the model to focus on informative features while suppressing background noise, leading to improved detection accuracy and adaptability to different domains. The second contribution is the attention-based domain classification module, vital during training. This module helps the model identify domain-specific information, facilitating the learning of domain-invariant features. Consequently, ADOD can generalize effectively to underwater environments with distinct visual characteristics. Extensive experiments on diverse underwater datasets demonstrate ADOD’s superior performance compared to state-of-the-art domain generalization methods, particularly in challenging scenarios. The proposed model achieves exceptional detection performance in both seen and unseen domains, showcasing its effectiveness in handling domain shifts in underwater object detection tasks. ADOD represents a significant advancement in adaptive object detection, providing a promising solution for real-world applications in underwater environments. With the prevalence of domain shifts in such settings, the model’s strong generalization ability becomes a valuable asset for practical underwater surveillance and marine research endeavors.
PDF

点此查看论文截图

DGNet: Dynamic Gradient-guided Network with Noise Suppression for Underwater Image Enhancement

Authors:Jingchun Zhou, Zongxin He, Dehuan Zhang, Kin-man Lam, Weishi Zhang, Xianping Fu, Yi Wang, Chongyi Li

Underwater image enhancement (UIE) is a challenging task due to the complex degradation caused by underwater environments. To solve this issue, previous methods often idealize the degradation process, and neglect the impact of medium noise and object motion on the distribution of image features, limiting the generalization and adaptability of the model. Previous methods use the reference gradient that is constructed from original images and synthetic ground-truth images. This may cause the network performance to be influenced by some low-quality training data. Our approach utilizes predicted images to dynamically update pseudo-labels, adding a dynamic gradient to optimize the network’s gradient space. This process improves image quality and avoids local optima. Moreover, we propose a Feature Restoration and Reconstruction module (FRR) based on a Channel Combination Inference (CCI) strategy and a Frequency Domain Smoothing module (FRS). These modules decouple other degradation features while reducing the impact of various types of noise on network performance. Experiments on multiple public datasets demonstrate the superiority of our method over existing state-of-the-art approaches, especially in achieving performance milestones: PSNR of 25.6dB and SSIM of 0.93 on the UIEB dataset. Its efficiency in terms of parameter size and inference time further attests to its broad practicality. The code will be made publicly available.
PDF

点此查看论文截图

NVS-Adapter: Plug-and-Play Novel View Synthesis from a Single Image

Authors:Yoonwoo Jeong, Jinwoo Lee, Chiheon Kim, Minsu Cho, Doyup Lee

Transfer learning of large-scale Text-to-Image (T2I) models has recently shown impressive potential for Novel View Synthesis (NVS) of diverse objects from a single image. While previous methods typically train large models on multi-view datasets for NVS, fine-tuning the whole parameters of T2I models not only demands a high cost but also reduces the generalization capacity of T2I models in generating diverse images in a new domain. In this study, we propose an effective method, dubbed NVS-Adapter, which is a plug-and-play module for a T2I model, to synthesize novel multi-views of visual objects while fully exploiting the generalization capacity of T2I models. NVS-Adapter consists of two main components; view-consistency cross-attention learns the visual correspondences to align the local details of view features, and global semantic conditioning aligns the semantic structure of generated views with the reference view. Experimental results demonstrate that the NVS-Adapter can effectively synthesize geometrically consistent multi-views and also achieve high performance on benchmarks without full fine-tuning of T2I models. The code and data are publicly available in ~\href{https://postech-cvlab.github.io/nvsadapter/}{https://postech-cvlab.github.io/nvsadapter/}.
PDF Project Page: https://postech-cvlab.github.io/nvsadapter/

点此查看论文截图

CLIP in Medical Imaging: A Comprehensive Survey

Authors:Zihao Zhao, Yuxiao Liu, Han Wu, Yonghao Li, Sheng Wang, Lin Teng, Disheng Liu, Xiang Li, Zhiming Cui, Qian Wang, Dinggang Shen

Contrastive Language-Image Pre-training (CLIP), a straightforward yet effective pre-training paradigm, successfully introduces semantic-rich text supervision to vision models and has demonstrated promising results in various tasks due to its generalizability and interpretability. It has recently gained increasing interest in the medical imaging domain, either as a powerful pre-training paradigm for medical vision language alignment or a pre-trained key component for various clinical tasks. With the aim of facilitating a deeper understanding of this promising direction, this survey offers an in-depth exploration of the CLIP paradigm within the domain of medical imaging, regarding both refined CLIP pre-training and CLIP-driven applications. Our survey (1) starts with a brief introduction to the fundamentals of CLIP methodology. (2) Then, we investigate the adaptation of CLIP pre-training in the medical domain, focusing on how to optimize CLIP given characteristics of medical images and reports. (3) Furthermore, we explore the practical utilization of CLIP pre-trained models in various tasks, including classification, dense prediction, and cross-modal tasks. (4) Finally, we discuss existing limitations of CLIP in the context of medical imaging and propose forward-looking directions to address the demands of medical imaging domain. We expect that this comprehensive survey will provide researchers in the field of medical image analysis with a holistic understanding of the CLIP paradigm and its potential implications. The project page is available at https://github.com/zhaozh10/Awesome-CLIP-in-Medical-Imaging, which will be regularly updated.
PDF * These authors contributed equally. Project page available at https://github.com/zhaozh10/Awesome-CLIP-in-Medical-Imaging

点此查看论文截图

How Well Does GPT-4V(ision) Adapt to Distribution Shifts? A Preliminary Investigation

Authors:Zhongyi Han, Guanglin Zhou, Rundong He, Jindong Wang, Xing Xie, Tailin Wu, Yilong Yin, Salman Khan, Lina Yao, Tongliang Liu, Kun Zhang

In machine learning, generalization against distribution shifts — where deployment conditions diverge from the training scenarios — is crucial, particularly in fields like climate modeling, biomedicine, and autonomous driving. The emergence of foundation models, distinguished by their extensive pretraining and task versatility, has led to an increased interest in their adaptability to distribution shifts. GPT-4V(ision) acts as the most advanced publicly accessible multimodal foundation model, with extensive applications across various domains, including anomaly detection, video understanding, image generation, and medical diagnosis. However, its robustness against data distributions remains largely underexplored. Addressing this gap, this study rigorously evaluates GPT-4V’s adaptability and generalization capabilities in dynamic environments, benchmarking against prominent models like CLIP and LLaVA. We delve into GPT-4V’s zero-shot generalization across 13 diverse datasets spanning natural, medical, and molecular domains. We further investigate its adaptability to controlled data perturbations and examine the efficacy of in-context learning as a tool to enhance its adaptation. Our findings delineate GPT-4V’s capability boundaries in distribution shifts, shedding light on its strengths and limitations across various scenarios. Importantly, this investigation contributes to our understanding of how AI foundation models generalize to distribution shifts, offering pivotal insights into their adaptability and robustness. Code is publicly available at https://github.com/jameszhou-gl/gpt-4v-distribution-shift.
PDF 62 pages, 39 figures

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录