LLM


2023-12-07 更新

Multitask Learning Can Improve Worst-Group Outcomes

Authors:Atharva Kulkarni, Lucio Dery, Amrith Setlur, Aditi Raghunathan, Ameet Talwalkar, Graham Neubig

In order to create machine learning systems that serve a variety of users well, it is vital to not only achieve high average performance but also ensure equitable outcomes across diverse groups. However, most machine learning methods are designed to improve a model’s average performance on a chosen end task without consideration for their impact on worst group error. Multitask learning (MTL) is one such widely used technique. In this paper, we seek not only to understand the impact of MTL on worst-group accuracy but also to explore its potential as a tool to address the challenge of group-wise fairness. We primarily consider the common setting of fine-tuning a pre-trained model, where, following recent work (Gururangan et al., 2020; Dery et al., 2023), we multitask the end task with the pre-training objective constructed from the end task data itself. In settings with few or no group annotations, we find that multitasking often, but not always, achieves better worst-group accuracy than Just-Train-Twice (JTT; Liu et al. (2021)) — a representative distributionally robust optimization (DRO) method. Leveraging insights from synthetic data experiments, we propose to modify standard MTL by regularizing the joint multitask representation space. We run a large number of fine-tuning experiments across computer vision and natural language and find that our regularized MTL approach consistently outperforms JTT on both worst and average group outcomes. Our official code can be found here: https://github.com/atharvajk98/MTL-group-robustness.
PDF 20 pages, 7 tables, 6 Figures

点此查看论文截图

A Text-to-Text Model for Multilingual Offensive Language Identification

Authors:Tharindu Ranasinghe, Marcos Zampieri

The ubiquity of offensive content on social media is a growing cause for concern among companies and government organizations. Recently, transformer-based models such as BERT, XLNET, and XLM-R have achieved state-of-the-art performance in detecting various forms of offensive content (e.g. hate speech, cyberbullying, and cyberaggression). However, the majority of these models are limited in their capabilities due to their encoder-only architecture, which restricts the number and types of labels in downstream tasks. Addressing these limitations, this study presents the first pre-trained model with encoder-decoder architecture for offensive language identification with text-to-text transformers (T5) trained on two large offensive language identification datasets; SOLID and CCTK. We investigate the effectiveness of combining two datasets and selecting an optimal threshold in semi-supervised instances in SOLID in the T5 retraining step. Our pre-trained T5 model outperforms other transformer-based models fine-tuned for offensive language detection, such as fBERT and HateBERT, in multiple English benchmarks. Following a similar approach, we also train the first multilingual pre-trained model for offensive language identification using mT5 and evaluate its performance on a set of six different languages (German, Hindi, Korean, Marathi, Sinhala, and Spanish). The results demonstrate that this multilingual model achieves a new state-of-the-art on all the above datasets, showing its usefulness in multilingual scenarios. Our proposed T5-based models will be made freely available to the community.
PDF Accepted to Findings of IJCNLP-AACL 2023

点此查看论文截图

Improving the Generalization of Segmentation Foundation Model under Distribution Shift via Weakly Supervised Adaptation

Authors:Haojie Zhang, Yongyi Su, Xun Xu, Kui Jia

The success of large language models has inspired the computer vision community to explore image segmentation foundation model that is able to zero/few-shot generalize through prompt engineering. Segment-Anything(SAM), among others, is the state-of-the-art image segmentation foundation model demonstrating strong zero/few-shot generalization. Despite the success, recent studies reveal the weakness of SAM under strong distribution shift. In particular, SAM performs awkwardly on corrupted natural images, camouflaged images, medical images, etc. Motivated by the observations, we aim to develop a self-training based strategy to adapt SAM to target distribution. Given the unique challenges of large source dataset, high computation cost and incorrect pseudo label, we propose a weakly supervised self-training architecture with anchor regularization and low-rank finetuning to improve the robustness and computation efficiency of adaptation. We validate the effectiveness on 5 types of downstream segmentation tasks including natural clean/corrupted images, medical images, camouflaged images and robotic images. Our proposed method is task-agnostic in nature and outperforms pre-trained SAM and state-of-the-art domain adaptation methods on almost all downstream tasks with the same testing prompt inputs.
PDF 20 pages, 12 figures

点此查看论文截图

GPT-4 Enhanced Multimodal Grounding for Autonomous Driving: Leveraging Cross-Modal Attention with Large Language Models

Authors:Haicheng Liao, Huanming Shen, Zhenning Li, Chengyue Wang, Guofa Li, Yiming Bie, Chengzhong Xu

In the field of autonomous vehicles (AVs), accurately discerning commander intent and executing linguistic commands within a visual context presents a significant challenge. This paper introduces a sophisticated encoder-decoder framework, developed to address visual grounding in AVs.Our Context-Aware Visual Grounding (CAVG) model is an advanced system that integrates five core encoders-Text, Image, Context, and Cross-Modal-with a Multimodal decoder. This integration enables the CAVG model to adeptly capture contextual semantics and to learn human emotional features, augmented by state-of-the-art Large Language Models (LLMs) including GPT-4. The architecture of CAVG is reinforced by the implementation of multi-head cross-modal attention mechanisms and a Region-Specific Dynamic (RSD) layer for attention modulation. This architectural design enables the model to efficiently process and interpret a range of cross-modal inputs, yielding a comprehensive understanding of the correlation between verbal commands and corresponding visual scenes. Empirical evaluations on the Talk2Car dataset, a real-world benchmark, demonstrate that CAVG establishes new standards in prediction accuracy and operational efficiency. Notably, the model exhibits exceptional performance even with limited training data, ranging from 50% to 75% of the full dataset. This feature highlights its effectiveness and potential for deployment in practical AV applications. Moreover, CAVG has shown remarkable robustness and adaptability in challenging scenarios, including long-text command interpretation, low-light conditions, ambiguous command contexts, inclement weather conditions, and densely populated urban environments. The code for the proposed model is available at our Github.
PDF

点此查看论文截图

Holmes: Towards Distributed Training Across Clusters with Heterogeneous NIC Environment

Authors:Fei Yang, Shuang Peng, Ning Sun, Fangyu Wang, Ke Tan, Fu Wu, Jiezhong Qiu, Aimin Pan

Large language models (LLMs) such as GPT-3, OPT, and LLaMA have demonstrated remarkable accuracy in a wide range of tasks. However, training these models can incur significant expenses, often requiring tens of thousands of GPUs for months of continuous operation. Typically, this training is carried out in specialized GPU clusters equipped with homogeneous high-speed Remote Direct Memory Access (RDMA) network interface cards (NICs). The acquisition and maintenance of such dedicated clusters is challenging. Current LLM training frameworks, like Megatron-LM and Megatron-DeepSpeed, focus primarily on optimizing training within homogeneous cluster settings. In this paper, we introduce Holmes, a training framework for LLMs that employs thoughtfully crafted data and model parallelism strategies over the heterogeneous NIC environment. Our primary technical contribution lies in a novel scheduling method that intelligently allocates distinct computational tasklets in LLM training to specific groups of GPU devices based on the characteristics of their connected NICs. Furthermore, our proposed framework, utilizing pipeline parallel techniques, demonstrates scalability to multiple GPU clusters, even in scenarios without high-speed interconnects between nodes in distinct clusters. We conducted comprehensive experiments that involved various scenarios in the heterogeneous NIC environment. In most cases, our framework achieves performance levels close to those achievable with homogeneous RDMA-capable networks (InfiniBand or RoCE), significantly exceeding training efficiency within the pure Ethernet environment. Additionally, we verified that our framework outperforms other mainstream LLM frameworks under heterogeneous NIC environment in terms of training efficiency and can be seamlessly integrated with them.
PDF 14 pages

点此查看论文截图

Parameter-Efficient Transfer Learning of Audio Spectrogram Transformers

Authors:Umberto Cappellazzo, Daniele Falavigna, Alessio Brutti, Mirco Ravanelli

The common modus operandi of fine-tuning large pre-trained Transformer models entails the adaptation of all their parameters (i.e., full fine-tuning). While achieving striking results on multiple tasks, this approach becomes unfeasible as the model size and the number of downstream tasks increase. In natural language processing and computer vision, parameter-efficient approaches like prompt-tuning and adapters have emerged as solid alternatives by fine-tuning only a small number of extra parameters, without sacrificing performance accuracy. Specifically, adapters, due to their flexibility, have recently garnered significant attention, leading to several variants. For audio classification tasks, the Audio Spectrogram Transformer model shows impressive results. However, surprisingly, how to efficiently adapt it to several downstream tasks has not been tackled before. In this paper, we bridge this gap and present a detailed investigation of common parameter-efficient methods, revealing that adapters consistently outperform the other methods across four benchmarks. This trend is also confirmed in few-shot learning settings and when the total number of trainable parameters increases, demonstrating adapters superior scalability. We finally study the best adapter configuration, as well as the role of residual connections in the learning process. Our code is available at: https://github.com/umbertocappellazzo/PETL AST.
PDF The code is available at: https://github.com/umbertocappellazzo/PETL_AST

点此查看论文截图

OneLLM: One Framework to Align All Modalities with Language

Authors:Jiaming Han, Kaixiong Gong, Yiyuan Zhang, Jiaqi Wang, Kaipeng Zhang, Dahua Lin, Yu Qiao, Peng Gao, Xiangyu Yue

Multimodal large language models (MLLMs) have gained significant attention due to their strong multimodal understanding capability. However, existing works rely heavily on modality-specific encoders, which usually differ in architecture and are limited to common modalities. In this paper, we present OneLLM, an MLLM that aligns eight modalities to language using a unified framework. We achieve this through a unified multimodal encoder and a progressive multimodal alignment pipeline. In detail, we first train an image projection module to connect a vision encoder with LLM. Then, we build a universal projection module (UPM) by mixing multiple image projection modules and dynamic routing. Finally, we progressively align more modalities to LLM with the UPM. To fully leverage the potential of OneLLM in following instructions, we also curated a comprehensive multimodal instruction dataset, including 2M items from image, audio, video, point cloud, depth/normal map, IMU and fMRI brain activity. OneLLM is evaluated on 25 diverse benchmarks, encompassing tasks such as multimodal captioning, question answering and reasoning, where it delivers excellent performance. Code, data, model and online demo are available at https://github.com/csuhan/OneLLM
PDF Code: https://github.com/csuhan/OneLLM

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录