2023-12-06 更新
SparseDC: Depth Completion from sparse and non-uniform inputs
Authors:Chen Long, Wenxiao Zhang, Zhe Chen, Haiping Wang, Yuan Liu, Zhen Cao, Zhen Dong, Bisheng Yang
We propose SparseDC, a model for Depth Completion of Sparse and non-uniform depth inputs. Unlike previous methods focusing on completing fixed distributions on benchmark datasets (e.g., NYU with 500 points, KITTI with 64 lines), SparseDC is specifically designed to handle depth maps with poor quality in real usage. The key contributions of SparseDC are two-fold. First, we design a simple strategy, called SFFM, to improve the robustness under sparse input by explicitly filling the unstable depth features with stable image features. Second, we propose a two-branch feature embedder to predict both the precise local geometry of regions with available depth values and accurate structures in regions with no depth. The key of the embedder is an uncertainty-based fusion module called UFFM to balance the local and long-term information extracted by CNNs and ViTs. Extensive indoor and outdoor experiments demonstrate the robustness of our framework when facing sparse and non-uniform input depths. The pre-trained model and code are available at https://github.com/WHU-USI3DV/SparseDC.
PDF
点此查看论文截图
SCHEME: Scalable Channer Mixer for Vision Transformers
Authors:Deepak Sridhar, Yunsheng Li, Nuno Vasconcelos
Vision Transformers have received significant attention due to their impressive performance in many vision tasks. While the token mixer or attention block has been studied in great detail, the channel mixer or feature mixing block (FFN or MLP) has not been explored in depth albeit it accounts for a bulk of the parameters and computation in a model. In this work, we study whether sparse feature mixing can replace the dense connections and confirm this with a block diagonal MLP structure that improves the accuracy by supporting larger expansion ratios. To improve the feature clusters formed by this structure and thereby further improve the accuracy, a lightweight, parameter-free, channel covariance attention (CCA) mechanism is introduced as a parallel branch during training. This design of CCA enables gradual feature mixing across channel groups during training whose contribution decays to zero as the training progresses to convergence. This allows the CCA block to be discarded during inference, thus enabling enhanced performance with no additional computational cost. The resulting $\textit{Scalable CHannEl MixEr}$ (SCHEME) can be plugged into any ViT architecture to obtain a gamut of models with different trade-offs between complexity and performance by controlling the block diagonal structure size in the MLP. This is shown by the introduction of a new family of SCHEMEformer models. Experiments on image classification, object detection, and semantic segmentation, with different ViT backbones, consistently demonstrate substantial accuracy gains over existing designs, especially under lower FLOPs regimes. For example, the SCHEMEformer establishes a new SOTA of 79.7% accuracy for ViTs using pure attention mixers on ImageNet-1K at 1.77G FLOPs.
PDF Preprint. Under review
点此查看论文截图
Open-vocabulary object 6D pose estimation
Authors:Jaime Corsetti, Davide Boscaini, Changjae Oh, Andrea Cavallaro, Fabio Poiesi
We introduce the new setting of open-vocabulary object 6D pose estimation, in which a textual prompt is used to specify the object of interest. In contrast to existing approaches, in our setting (i) the object of interest is specified solely through the textual prompt, (ii) no object model (e.g. CAD or video sequence) is required at inference, (iii) the object is imaged from two different viewpoints of two different scenes, and (iv) the object was not observed during the training phase. To operate in this setting, we introduce a novel approach that leverages a Vision-Language Model to segment the object of interest from two distinct scenes and to estimate its relative 6D pose. The key of our approach is a carefully devised strategy to fuse object-level information provided by the prompt with local image features, resulting in a feature space that can generalize to novel concepts. We validate our approach on a new benchmark based on two popular datasets, REAL275 and Toyota-Light, which collectively encompass 39 object instances appearing in four thousand image pairs. The results demonstrate that our approach outperforms both a well-established hand-crafted method and a recent deep learning-based baseline in estimating the relative 6D pose of objects in different scenes. Project website: https://jcorsetti.github.io/oryon-website/.
PDF Technical report. 21 pages, 15 figures, 6 tables
点此查看论文截图
D$^2$ST-Adapter: Disentangled-and-Deformable Spatio-Temporal Adapter for Few-shot Action Recognition
Authors:Wenjie Pei, Qizhong Tan, Guangming Lu, Jiandong Tian
Adapting large pre-trained image models to few-shot action recognition has proven to be an effective and efficient strategy for learning robust feature extractors, which is essential for few-shot learning. Typical fine-tuning based adaptation paradigm is prone to overfitting in the few-shot learning scenarios and offers little modeling flexibility for learning temporal features in video data. In this work we present the Disentangled-and-Deformable Spatio-Temporal Adapter (D$^2$ST-Adapter), a novel adapter tuning framework for few-shot action recognition, which is designed in a dual-pathway architecture to encode spatial and temporal features in a disentangled manner. Furthermore, we devise the Deformable Spatio-Temporal Attention module as the core component of D$^2$ST-Adapter, which can be tailored to model both spatial and temporal features in corresponding pathways, allowing our D$^2$ST-Adapter to encode features in a global view in 3D spatio-temporal space while maintaining a lightweight design. Extensive experiments with instantiations of our method on both pre-trained ResNet and ViT demonstrate the superiority of our method over state-of-the-art methods for few-shot action recognition. Our method is particularly well-suited to challenging scenarios where temporal dynamics are critical for action recognition.
PDF
点此查看论文截图
APoLLo: Unified Adapter and Prompt Learning for Vision Language Models
Authors:Sanjoy Chowdhury, Sayan Nag, Dinesh Manocha
The choice of input text prompt plays a critical role in the performance of Vision-Language Pretrained (VLP) models such as CLIP. We present APoLLo, a unified multi-modal approach that combines Adapter and Prompt learning for Vision-Language models. Our method is designed to substantially improve the generalization capabilities of VLP models when they are fine-tuned in a few-shot setting. We introduce trainable cross-attention-based adapter layers in conjunction with vision and language encoders to strengthen the alignment between the two modalities. We enforce consistency between the respective encoder branches (receiving augmented inputs) to prevent overfitting in downstream tasks. Our method is evaluated on three representative tasks: generalization to novel classes, cross-dataset evaluation, and unseen domain shifts. In practice, APoLLo achieves a relative gain up to 6.03% over MaPLe (SOTA) on novel classes for 10 diverse image recognition datasets.
PDF Accepted at EMNLP 2023 (Main track)
点此查看论文截图
IMProv: Inpainting-based Multimodal Prompting for Computer Vision Tasks
Authors:Jiarui Xu, Yossi Gandelsman, Amir Bar, Jianwei Yang, Jianfeng Gao, Trevor Darrell, Xiaolong Wang
In-context learning allows adapting a model to new tasks given a task description at test time. In this paper, we present IMProv - a generative model that is able to in-context learn visual tasks from multimodal prompts. Given a textual description of a visual task (e.g. “Left: input image, Right: foreground segmentation”), a few input-output visual examples, or both, the model in-context learns to solve it for a new test input. We train a masked generative transformer on a new dataset of figures from computer vision papers and their associated captions, together with a captioned large-scale image-text dataset. During inference time, we prompt the model with text and/or image task example(s) and have the model inpaint the corresponding output. We show that training our model with text conditioning and scaling the dataset size improves in-context learning for computer vision tasks by over +10\% AP for Foreground Segmentation, over +5\% gains in AP for Single Object Detection, and almost 20\% lower LPIPS in Colorization. Our empirical results suggest that vision and language prompts are complementary and it is advantageous to use both to achieve better in-context learning performance. Project page is available at https://jerryxu.net/IMProv .
PDF Project page: https://jerryxu.net/IMProv
点此查看论文截图
Rejuvenating image-GPT as Strong Visual Representation Learners
Authors:Sucheng Ren, Zeyu Wang, Hongru Zhu, Junfei Xiao, Alan Yuille, Cihang Xie
This paper enhances image-GPT (iGPT), one of the pioneering works that introduce autoregressive pretraining to predict next pixels for visual representation learning. Two simple yet essential changes are made. First, we shift the prediction target from raw pixels to semantic tokens, enabling a higher-level understanding of visual content. Second, we supplement the autoregressive modeling by instructing the model to predict not only the next tokens but also the visible tokens. This pipeline is particularly effective when semantic tokens are encoded by discriminatively trained models, such as CLIP. We introduce this novel approach as D-iGPT. Extensive experiments showcase that D-iGPT excels as a strong learner of visual representations: A notable achievement of D-iGPT is its compelling performance on the ImageNet-1K dataset — by training on publicly available datasets, D-iGPT achieves 89.5\% top-1 accuracy with a vanilla ViT-Large model. This model also shows strong generalization on the downstream task and robustness on out-of-distribution samples. Code is avaiable at \href{https://github.com/OliverRensu/D-iGPT}{https://github.com/OliverRensu/D-iGPT}.
PDF Larger models are coming
点此查看论文截图
Aligning and Prompting Everything All at Once for Universal Visual Perception
Authors:Yunhang Shen, Chaoyou Fu, Peixian Chen, Mengdan Zhang, Ke Li, Xing Sun, Yunsheng Wu, Shaohui Lin, Rongrong Ji
Vision foundation models have been explored recently to build general-purpose vision systems. However, predominant paradigms, driven by casting instance-level tasks as an object-word alignment, bring heavy cross-modality interaction, which is not effective in prompting object detection and visual grounding. Another line of work that focuses on pixel-level tasks often encounters a large annotation gap of things and stuff, and suffers from mutual interference between foreground-object and background-class segmentation. In stark contrast to the prevailing methods, we present APE, a universal visual perception model for aligning and prompting everything all at once in an image to perform diverse tasks, i.e., detection, segmentation, and grounding, as an instance-level sentence-object matching paradigm. Specifically, APE advances the convergence of detection and grounding by reformulating language-guided grounding as open-vocabulary detection, which efficiently scales up model prompting to thousands of category vocabularies and region descriptions while maintaining the effectiveness of cross-modality fusion. To bridge the granularity gap of different pixel-level tasks, APE equalizes semantic and panoptic segmentation to proxy instance learning by considering any isolated regions as individual instances. APE aligns vision and language representation on broad data with natural and challenging characteristics all at once without task-specific fine-tuning. The extensive experiments on over 160 datasets demonstrate that, with only one-suit of weights, APE outperforms (or is on par with) the state-of-the-art models, proving that an effective yet universal perception for anything aligning and prompting is indeed feasible. Codes and trained models are released at https://github.com/shenyunhang/APE.
PDF
点此查看论文截图
Local Masking Meets Progressive Freezing: Crafting Efficient Vision Transformers for Self-Supervised Learning
Authors:Utku Mert Topcuoglu, Erdem Akagündüz
In this paper, we present an innovative approach to self-supervised learning for Vision Transformers (ViTs), integrating local masked image modeling with progressive layer freezing. This method focuses on enhancing the efficiency and speed of initial layer training in ViTs. By systematically freezing specific layers at strategic points during training, we reduce computational demands while maintaining or improving learning capabilities. Our approach employs a novel multi-scale reconstruction process that fosters efficient learning in initial layers and enhances semantic comprehension across scales. The results demonstrate a substantial reduction in training time (~12.5\%) with a minimal impact on model accuracy (decrease in top-1 accuracy by 0.6\%). Our method achieves top-1 and top-5 accuracies of 82.6\% and 96.2\%, respectively, underscoring its potential in scenarios where computational resources and time are critical. This work marks an advancement in the field of self-supervised learning for computer vision. The implementation of our approach is available at our project’s GitHub repository: github.com/utkutpcgl/ViTFreeze.
PDF
点此查看论文截图
Class-Discriminative Attention Maps for Vision Transformers
Authors:Lennart Brocki, Neo Christopher Chung
Interpretability methods are critical components for examining and exploring deep neural networks (DNN), as well as increasing our understanding of and trust in them. Vision transformers (ViT), which can be trained to state-of-the-art performance with a self-supervised learning (SSL) training method, provide built-in attention maps (AM). While AMs can provide high-quality semantic segmentation of input images, they do not account for any signal coming from a downstream classifier. We introduce class-discriminative attention maps (CDAM), a novel post-hoc explanation method that is highly sensitive to the target class. Our method essentially scales attention scores by how relevant the corresponding tokens are for the predictions of a classifier head. Alternative to classifier outputs, CDAM can also explain a user-defined concept by targeting similarity measures in the latent space of the ViT. This allows for explanations of arbitrary concepts, defined by the user through a few sample images. We investigate the operating characteristics of CDAM in comparison with relevance propagation (RP) and token ablation maps (TAM), an alternative to pixel occlusion methods. CDAM is highly class-discriminative and semantically relevant, while providing implicit regularization of relevance scores. PyTorch implementation: \url{https://github.com/lenbrocki/CDAM} Web live demo: \url{https://cdam.informatism.com/}
PDF
点此查看论文截图
Towards Granularity-adjusted Pixel-level Semantic Annotation
Authors:Rohit Kundu, Sudipta Paul, Rohit Lal, Amit K. Roy-Chowdhury
Recent advancements in computer vision predominantly rely on learning-based systems, leveraging annotations as the driving force to develop specialized models. However, annotating pixel-level information, particularly in semantic segmentation, presents a challenging and labor-intensive task, prompting the need for autonomous processes. In this work, we propose GranSAM which distinguishes itself by providing semantic segmentation at the user-defined granularity level on unlabeled data without the need for any manual supervision, offering a unique contribution in the realm of semantic mask annotation method. Specifically, we propose an approach to enable the Segment Anything Model (SAM) with semantic recognition capability to generate pixel-level annotations for images without any manual supervision. For this, we accumulate semantic information from synthetic images generated by the Stable Diffusion model or web crawled images and employ this data to learn a mapping function between SAM mask embeddings and object class labels. As a result, SAM, enabled with granularity-adjusted mask recognition, can be used for pixel-level semantic annotation purposes. We conducted experiments on the PASCAL VOC 2012 and COCO-80 datasets and observed a +17.95% and +5.17% increase in mIoU, respectively, compared to existing state-of-the-art methods when evaluated under our problem setting.
PDF
点此查看论文截图
UPOCR: Towards Unified Pixel-Level OCR Interface
Authors:Dezhi Peng, Zhenhua Yang, Jiaxin Zhang, Chongyu Liu, Yongxin Shi, Kai Ding, Fengjun Guo, Lianwen Jin
In recent years, the optical character recognition (OCR) field has been proliferating with plentiful cutting-edge approaches for a wide spectrum of tasks. However, these approaches are task-specifically designed with divergent paradigms, architectures, and training strategies, which significantly increases the complexity of research and maintenance and hinders the fast deployment in applications. To this end, we propose UPOCR, a simple-yet-effective generalist model for Unified Pixel-level OCR interface. Specifically, the UPOCR unifies the paradigm of diverse OCR tasks as image-to-image transformation and the architecture as a vision Transformer (ViT)-based encoder-decoder. Learnable task prompts are introduced to push the general feature representations extracted by the encoder toward task-specific spaces, endowing the decoder with task awareness. Moreover, the model training is uniformly aimed at minimizing the discrepancy between the generated and ground-truth images regardless of the inhomogeneity among tasks. Experiments are conducted on three pixel-level OCR tasks including text removal, text segmentation, and tampered text detection. Without bells and whistles, the experimental results showcase that the proposed method can simultaneously achieve state-of-the-art performance on three tasks with a unified single model, which provides valuable strategies and insights for future research on generalist OCR models. Code will be publicly available.
PDF
点此查看论文截图
Multimodal Prompt Perceiver: Empower Adaptiveness, Generalizability and Fidelity for All-in-One Image Restoration
Authors:Yuang Ai, Huaibo Huang, Xiaoqiang Zhou, Jiexiang Wang, Ran He
Despite substantial progress, all-in-one image restoration (IR) grapples with persistent challenges in handling intricate real-world degradations. This paper introduces MPerceiver: a novel multimodal prompt learning approach that harnesses Stable Diffusion (SD) priors to enhance adaptiveness, generalizability and fidelity for all-in-one image restoration. Specifically, we develop a dual-branch module to master two types of SD prompts: textual for holistic representation and visual for multiscale detail representation. Both prompts are dynamically adjusted by degradation predictions from the CLIP image encoder, enabling adaptive responses to diverse unknown degradations. Moreover, a plug-in detail refinement module improves restoration fidelity via direct encoder-to-decoder information transformation. To assess our method, MPerceiver is trained on 9 tasks for all-in-one IR and outperforms state-of-the-art task-specific methods across most tasks. Post multitask pre-training, MPerceiver attains a generalized representation in low-level vision, exhibiting remarkable zero-shot and few-shot capabilities in unseen tasks. Extensive experiments on 16 IR tasks and 26 benchmarks underscore the superiority of MPerceiver in terms of adaptiveness, generalizability and fidelity.
PDF 13 pages, 8 figures, 9 tables