人脸相关


2023-12-06 更新

Rethinking the Domain Gap in Near-infrared Face Recognition

Authors:Michail Tarasiou, Jiankang Deng, Stefanos Zafeiriou

Heterogeneous face recognition (HFR) involves the intricate task of matching face images across the visual domains of visible (VIS) and near-infrared (NIR). While much of the existing literature on HFR identifies the domain gap as a primary challenge and directs efforts towards bridging it at either the input or feature level, our work deviates from this trend. We observe that large neural networks, unlike their smaller counterparts, when pre-trained on large scale homogeneous VIS data, demonstrate exceptional zero-shot performance in HFR, suggesting that the domain gap might be less pronounced than previously believed. By approaching the HFR problem as one of low-data fine-tuning, we introduce a straightforward framework: comprehensive pre-training, succeeded by a regularized fine-tuning strategy, that matches or surpasses the current state-of-the-art on four publicly available benchmarks. Corresponding codes can be found at https://github.com/michaeltrs/RethinkNIRVIS.
PDF 5 pages, 3 figures, 6 tables

点此查看论文截图

DiFace: Cross-Modal Face Recognition through Controlled Diffusion

Authors:Bowen Sun, Shibao Zheng

Diffusion probabilistic models (DPMs) have exhibited exceptional proficiency in generating visual media of outstanding quality and realism. Nonetheless, their potential in non-generative domains, such as face recognition, has yet to be thoroughly investigated. Meanwhile, despite the extensive development of multi-modal face recognition methods, their emphasis has predominantly centered on visual modalities. In this context, face recognition through textual description presents a unique and promising solution that not only transcends the limitations from application scenarios but also expands the potential for research in the field of cross-modal face recognition. It is regrettable that this avenue remains unexplored and underutilized, a consequence from the challenges mainly associated with three aspects: 1) the intrinsic imprecision of verbal descriptions; 2) the significant gaps between texts and images; and 3) the immense hurdle posed by insufficient databases.To tackle this problem, we present DiFace, a solution that effectively achieves face recognition via text through a controllable diffusion process, by establishing its theoretical connection with probability transport. Our approach not only unleashes the potential of DPMs across a broader spectrum of tasks but also achieves, to the best of our knowledge, a significant accuracy in text-to-image face recognition for the first time, as demonstrated by our experiments on verification and identification.
PDF

点此查看论文截图

Effective Adapter for Face Recognition in the Wild

Authors:Yunhao Liu, Lu Qi, Yu-Ju Tsai, Xiangtai Li, Kelvin C. K. Chan, Ming-Hsuan Yang

In this paper, we tackle the challenge of face recognition in the wild, where images often suffer from low quality and real-world distortions. Traditional heuristic approaches-either training models directly on these degraded images or their enhanced counterparts using face restoration techniques-have proven ineffective, primarily due to the degradation of facial features and the discrepancy in image domains. To overcome these issues, we propose an effective adapter for augmenting existing face recognition models trained on high-quality facial datasets. The key of our adapter is to process both the unrefined and the enhanced images by two similar structures where one is fixed and the other trainable. Such design can confer two benefits. First, the dual-input system minimizes the domain gap while providing varied perspectives for the face recognition model, where the enhanced image can be regarded as a complex non-linear transformation of the original one by the restoration model. Second, both two similar structures can be initialized by the pre-trained models without dropping the past knowledge. The extensive experiments in zero-shot settings show the effectiveness of our method by surpassing baselines of about 3%, 4%, and 7% in three datasets. Our code will be publicly available at https://github.com/liuyunhaozz/FaceAdapter/.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录