I2I Translation


2023-12-06 更新

S2ST: Image-to-Image Translation in the Seed Space of Latent Diffusion

Authors:Or Greenberg, Eran Kishon, Dani Lischinski

Image-to-image translation (I2IT) refers to the process of transforming images from a source domain to a target domain while maintaining a fundamental connection in terms of image content. In the past few years, remarkable advancements in I2IT were achieved by Generative Adversarial Networks (GANs), which nevertheless struggle with translations requiring high precision. Recently, Diffusion Models have established themselves as the engine of choice for image generation. In this paper we introduce S2ST, a novel framework designed to accomplish global I2IT in complex photorealistic images, such as day-to-night or clear-to-rain translations of automotive scenes. S2ST operates within the seed space of a Latent Diffusion Model, thereby leveraging the powerful image priors learned by the latter. We show that S2ST surpasses state-of-the-art GAN-based I2IT methods, as well as diffusion-based approaches, for complex automotive scenes, improving fidelity while respecting the target domain’s appearance across a variety of domains. Notably, S2ST obviates the necessity for training domain-specific translation networks.
PDF 17 pages, 15 figures

点此查看论文截图

PipeOptim: Ensuring Effective 1F1B Schedule with Optimizer-Dependent Weight Prediction

Authors:Lei Guan, Dongsheng Li, Jiye Liang, Wenjian Wang, Xicheng Lu

Asynchronous pipeline model parallelism with a “1F1B” (one forward, one backward) schedule generates little bubble overhead and always provides quite a high throughput. However, the “1F1B” schedule inevitably leads to weight inconsistency and weight staleness issues due to the cross-training of different mini-batches across GPUs. To simultaneously address these two problems, in this paper, we propose an optimizer-dependent weight prediction strategy (a.k.a PipeOptim) for asynchronous pipeline training. The key insight of our proposal is that we employ a weight prediction strategy in the forward pass to ensure that each mini-batch uses consistent and staleness-free weights to compute the forward pass. To be concrete, we first construct the weight prediction scheme based on the update rule of the used optimizer when training the deep neural network models. Then throughout the “1F1B” pipelined training, each mini-batch is mandated to execute weight prediction ahead of the forward pass, subsequently employing the predicted weights to perform the forward pass. As a result, PipeOptim 1) inherits the advantage of the “1F1B” schedule and generates pretty high throughput, and 2) can ensure effective parameter learning regardless of the type of the used optimizer. To verify the effectiveness of our proposal, we conducted extensive experimental evaluations using eight different deep-learning models spanning three machine-learning tasks including image classification, sentiment analysis, and machine translation. The experiment results demonstrate that PipeOptim outperforms the popular pipelined approaches including GPipe, PipeDream, PipeDream-2BW, and SpecTrain. The code of PipeOptim can be accessible at https://github.com/guanleics/PipeOptim.
PDF 14 pages

点此查看论文截图

Open-DDVM: A Reproduction and Extension of Diffusion Model for Optical Flow Estimation

Authors:Qiaole Dong, Bo Zhao, Yanwei Fu

Recently, Google proposes DDVM which for the first time demonstrates that a general diffusion model for image-to-image translation task works impressively well on optical flow estimation task without any specific designs like RAFT. However, DDVM is still a closed-source model with the expensive and private Palette-style pretraining. In this technical report, we present the first open-source DDVM by reproducing it. We study several design choices and find those important ones. By training on 40k public data with 4 GPUs, our reproduction achieves comparable performance to the closed-source DDVM. The code and model have been released in https://github.com/DQiaole/FlowDiffusion_pytorch.
PDF Technical Report

点此查看论文截图

InvertAvatar: Incremental GAN Inversion for Generalized Head Avatars

Authors:Xiaochen Zhao, Jingxiang Sun, Lizhen Wang, Yebin Liu

While high fidelity and efficiency are central to the creation of digital head avatars, recent methods relying on 2D or 3D generative models often experience limitations such as shape distortion, expression inaccuracy, and identity flickering. Additionally, existing one-shot inversion techniques fail to fully leverage multiple input images for detailed feature extraction. We propose a novel framework, \textbf{Incremental 3D GAN Inversion}, that enhances avatar reconstruction performance using an algorithm designed to increase the fidelity from multiple frames, resulting in improved reconstruction quality proportional to frame count. Our method introduces a unique animatable 3D GAN prior with two crucial modifications for enhanced expression controllability alongside an innovative neural texture encoder that categorizes texture feature spaces based on UV parameterization. Differentiating from traditional techniques, our architecture emphasizes pixel-aligned image-to-image translation, mitigating the need to learn correspondences between observation and canonical spaces. Furthermore, we incorporate ConvGRU-based recurrent networks for temporal data aggregation from multiple frames, boosting geometry and texture detail reconstruction. The proposed paradigm demonstrates state-of-the-art performance on one-shot and few-shot avatar animation tasks.
PDF

点此查看论文截图

STEREOFOG — Computational DeFogging via Image-to-Image Translation on a real-world Dataset

Authors:Anton Pollak, Rajesh Menon

Image-to-Image translation (I2I) is a subtype of Machine Learning (ML) that has tremendous potential in applications where two domains of images and the need for translation between the two exist, such as the removal of fog. For example, this could be useful for autonomous vehicles, which currently struggle with adverse weather conditions like fog. However, datasets for I2I tasks are not abundant and typically hard to acquire. Here, we introduce STEREOFOG, a dataset comprised of $10,067$ paired fogged and clear images, captured using a custom-built device, with the purpose of exploring I2I’s potential in this domain. It is the only real-world dataset of this kind to the best of our knowledge. Furthermore, we apply and optimize the pix2pix I2I ML framework to this dataset. With the final model achieving an average Complex Wavelet-Structural Similarity (CW-SSIM) score of $0.76$, we prove the technique’s suitability for the problem.
PDF 7 pages, 7 figures, for associated dataset and Supplement file, see https://github.com/apoll2000/stereofog

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录