Few-Shot


2023-12-06 更新

Few-shot Shape Recognition by Learning Deep Shape-aware Features

Authors:Wenlong Shi, Changsheng Lu, Ming Shao, Yinjie Zhang, Siyu Xia, Piotr Koniusz

Traditional shape descriptors have been gradually replaced by convolutional neural networks due to their superior performance in feature extraction and classification. The state-of-the-art methods recognize object shapes via image reconstruction or pixel classification. However , these methods are biased toward texture information and overlook the essential shape descriptions, thus, they fail to generalize to unseen shapes. We are the first to propose a fewshot shape descriptor (FSSD) to recognize object shapes given only one or a few samples. We employ an embedding module for FSSD to extract transformation-invariant shape features. Secondly, we develop a dual attention mechanism to decompose and reconstruct the shape features via learnable shape primitives. In this way, any shape can be formed through a finite set basis, and the learned representation model is highly interpretable and extendable to unseen shapes. Thirdly, we propose a decoding module to include the supervision of shape masks and edges and align the original and reconstructed shape features, enforcing the learned features to be more shape-aware. Lastly, all the proposed modules are assembled into a few-shot shape recognition scheme. Experiments on five datasets show that our FSSD significantly improves the shape classification compared to the state-of-the-art under the few-shot setting.
PDF Accepted by WACV 2024; 8 pages for main paper

点此查看论文截图

D$^2$ST-Adapter: Disentangled-and-Deformable Spatio-Temporal Adapter for Few-shot Action Recognition

Authors:Wenjie Pei, Qizhong Tan, Guangming Lu, Jiandong Tian

Adapting large pre-trained image models to few-shot action recognition has proven to be an effective and efficient strategy for learning robust feature extractors, which is essential for few-shot learning. Typical fine-tuning based adaptation paradigm is prone to overfitting in the few-shot learning scenarios and offers little modeling flexibility for learning temporal features in video data. In this work we present the Disentangled-and-Deformable Spatio-Temporal Adapter (D$^2$ST-Adapter), a novel adapter tuning framework for few-shot action recognition, which is designed in a dual-pathway architecture to encode spatial and temporal features in a disentangled manner. Furthermore, we devise the Deformable Spatio-Temporal Attention module as the core component of D$^2$ST-Adapter, which can be tailored to model both spatial and temporal features in corresponding pathways, allowing our D$^2$ST-Adapter to encode features in a global view in 3D spatio-temporal space while maintaining a lightweight design. Extensive experiments with instantiations of our method on both pre-trained ResNet and ViT demonstrate the superiority of our method over state-of-the-art methods for few-shot action recognition. Our method is particularly well-suited to challenging scenarios where temporal dynamics are critical for action recognition.
PDF

点此查看论文截图

APoLLo: Unified Adapter and Prompt Learning for Vision Language Models

Authors:Sanjoy Chowdhury, Sayan Nag, Dinesh Manocha

The choice of input text prompt plays a critical role in the performance of Vision-Language Pretrained (VLP) models such as CLIP. We present APoLLo, a unified multi-modal approach that combines Adapter and Prompt learning for Vision-Language models. Our method is designed to substantially improve the generalization capabilities of VLP models when they are fine-tuned in a few-shot setting. We introduce trainable cross-attention-based adapter layers in conjunction with vision and language encoders to strengthen the alignment between the two modalities. We enforce consistency between the respective encoder branches (receiving augmented inputs) to prevent overfitting in downstream tasks. Our method is evaluated on three representative tasks: generalization to novel classes, cross-dataset evaluation, and unseen domain shifts. In practice, APoLLo achieves a relative gain up to 6.03% over MaPLe (SOTA) on novel classes for 10 diverse image recognition datasets.
PDF Accepted at EMNLP 2023 (Main track)

点此查看论文截图

Bootstrapping SparseFormers from Vision Foundation Models

Authors:Ziteng Gao, Zhan Tong, Kevin Qinghong Lin, Joya Chen, Mike Zheng Shou

The recently proposed SparseFormer architecture provides an alternative approach to visual understanding by utilizing a significantly lower number of visual tokens via adjusting RoIs, greatly reducing computational costs while still achieving promising performance. However, training SparseFormers from scratch is still expensive, and scaling up the number of parameters can be challenging. In this paper, we propose to bootstrap SparseFormers from ViT-based vision foundation models in a simple and efficient way. Since the majority of SparseFormer blocks are the standard transformer ones, we can inherit weights from large-scale pre-trained vision transformers and freeze them as much as possible. Therefore, we only need to train the SparseFormer-specific lightweight focusing transformer to adjust token RoIs and fine-tune a few early pre-trained blocks to align the final token representation. In such a way, we can bootstrap SparseFormer architectures from various large-scale pre-trained models (e.g., IN-21K pre-trained AugRegs or CLIPs) using a rather smaller amount of training samples (e.g., IN-1K) and without labels or captions within just a few hours. As a result, the bootstrapped unimodal SparseFormer (from AugReg-ViT-L/16-384) can reach 84.9% accuracy on IN-1K with only 49 tokens, and the multimodal SparseFormer from CLIPs also demonstrates notable zero-shot performance with highly reduced computational cost without seeing any caption during the bootstrapping procedure. In addition, CLIP-bootstrapped SparseFormers, which align the output space with language without seeing a word, can serve as efficient vision encoders in multimodal large language models. Code will be publicly available at https://github.com/showlab/sparseformer
PDF Technical report

点此查看论文截图

InvertAvatar: Incremental GAN Inversion for Generalized Head Avatars

Authors:Xiaochen Zhao, Jingxiang Sun, Lizhen Wang, Yebin Liu

While high fidelity and efficiency are central to the creation of digital head avatars, recent methods relying on 2D or 3D generative models often experience limitations such as shape distortion, expression inaccuracy, and identity flickering. Additionally, existing one-shot inversion techniques fail to fully leverage multiple input images for detailed feature extraction. We propose a novel framework, \textbf{Incremental 3D GAN Inversion}, that enhances avatar reconstruction performance using an algorithm designed to increase the fidelity from multiple frames, resulting in improved reconstruction quality proportional to frame count. Our method introduces a unique animatable 3D GAN prior with two crucial modifications for enhanced expression controllability alongside an innovative neural texture encoder that categorizes texture feature spaces based on UV parameterization. Differentiating from traditional techniques, our architecture emphasizes pixel-aligned image-to-image translation, mitigating the need to learn correspondences between observation and canonical spaces. Furthermore, we incorporate ConvGRU-based recurrent networks for temporal data aggregation from multiple frames, boosting geometry and texture detail reconstruction. The proposed paradigm demonstrates state-of-the-art performance on one-shot and few-shot avatar animation tasks.
PDF

点此查看论文截图

Generating Action-conditioned Prompts for Open-vocabulary Video Action Recognition

Authors:Chengyou Jia, Minnan Luo, Xiaojun Chang, Zhuohang Dang, Mingfei Han, Mengmeng Wang, Guang Dai, Sizhe Dang, Jingdong Wang

Exploring open-vocabulary video action recognition is a promising venture, which aims to recognize previously unseen actions within any arbitrary set of categories. Existing methods typically adapt pretrained image-text models to the video domain, capitalizing on their inherent strengths in generalization. A common thread among such methods is the augmentation of visual embeddings with temporal information to improve the recognition of seen actions. Yet, they compromise with standard less-informative action descriptions, thus faltering when confronted with novel actions. Drawing inspiration from human cognitive processes, we argue that augmenting text embeddings with human prior knowledge is pivotal for open-vocabulary video action recognition. To realize this, we innovatively blend video models with Large Language Models (LLMs) to devise Action-conditioned Prompts. Specifically, we harness the knowledge in LLMs to produce a set of descriptive sentences that contain distinctive features for identifying given actions. Building upon this foundation, we further introduce a multi-modal action knowledge alignment mechanism to align concepts in video and textual knowledge encapsulated within the prompts. Extensive experiments on various video benchmarks, including zero-shot, few-shot, and base-to-novel generalization settings, demonstrate that our method not only sets new SOTA performance but also possesses excellent interpretability.
PDF

点此查看论文截图

HumanNeRF-SE: A Simple yet Effective Approach to Animate HumanNeRF with Diverse Poses

Authors:Caoyuan Ma, Yu-Lun Liu, Zhixiang Wang, Wu Liu, Xinchen Liu, Zheng Wang

We present HumanNeRF-SE, which can synthesize diverse novel pose images with simple input. Previous HumanNeRF studies require large neural networks to fit the human appearance and prior knowledge. Subsequent methods build upon this approach with some improvements. Instead, we reconstruct this approach, combining explicit and implicit human representations with both general and specific mapping processes. Our key insight is that explicit shape can filter the information used to fit implicit representation, and frozen general mapping combined with point-specific mapping can effectively avoid overfitting and improve pose generalization performance. Our explicit and implicit human represent combination architecture is extremely effective. This is reflected in our model’s ability to synthesize images under arbitrary poses with few-shot input and increase the speed of synthesizing images by 15 times through a reduction in computational complexity without using any existing acceleration modules. Compared to the state-of-the-art HumanNeRF studies, HumanNeRF-SE achieves better performance with fewer learnable parameters and less training time (see Figure 1).
PDF

点此查看论文截图

Multimodal Prompt Perceiver: Empower Adaptiveness, Generalizability and Fidelity for All-in-One Image Restoration

Authors:Yuang Ai, Huaibo Huang, Xiaoqiang Zhou, Jiexiang Wang, Ran He

Despite substantial progress, all-in-one image restoration (IR) grapples with persistent challenges in handling intricate real-world degradations. This paper introduces MPerceiver: a novel multimodal prompt learning approach that harnesses Stable Diffusion (SD) priors to enhance adaptiveness, generalizability and fidelity for all-in-one image restoration. Specifically, we develop a dual-branch module to master two types of SD prompts: textual for holistic representation and visual for multiscale detail representation. Both prompts are dynamically adjusted by degradation predictions from the CLIP image encoder, enabling adaptive responses to diverse unknown degradations. Moreover, a plug-in detail refinement module improves restoration fidelity via direct encoder-to-decoder information transformation. To assess our method, MPerceiver is trained on 9 tasks for all-in-one IR and outperforms state-of-the-art task-specific methods across most tasks. Post multitask pre-training, MPerceiver attains a generalized representation in low-level vision, exhibiting remarkable zero-shot and few-shot capabilities in unseen tasks. Extensive experiments on 16 IR tasks and 26 benchmarks underscore the superiority of MPerceiver in terms of adaptiveness, generalizability and fidelity.
PDF 13 pages, 8 figures, 9 tables

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录