2023-12-01 更新
LC4SV: A Denoising Framework Learning to Compensate for Unseen Speaker Verification Models
Authors:Chi-Chang Lee, Hong-Wei Chen, Chu-Song Chen, Hsin-Min Wang, Tsung-Te Liu, Yu Tsao
The performance of speaker verification (SV) models may drop dramatically in noisy environments. A speech enhancement (SE) module can be used as a front-end strategy. However, existing SE methods may fail to bring performance improvements to downstream SV systems due to artifacts in the predicted signals of SE models. To compensate for artifacts, we propose a generic denoising framework named LC4SV, which can serve as a pre-processor for various unknown downstream SV models. In LC4SV, we employ a learning-based interpolation agent to automatically generate the appropriate coefficients between the enhanced signal and its noisy input to improve SV performance in noisy environments. Our experimental results demonstrate that LC4SV consistently improves the performance of various unseen SV systems. To the best of our knowledge, this work is the first attempt to develop a learning-based interpolation scheme aiming at improving SV performance in noisy environments.
PDF
点此查看论文截图
Efficient Deep Speech Understanding at the Edge
Authors:Rongxiang Wang, Felix Lin
Contemporary Speech Understanding (SU) involves a sophisticated pipeline: capturing real-time voice input, the pipeline encompasses a deep neural network with an encoder-decoder architecture enhanced by beam search. This network periodically assesses attention and Connectionist Temporal Classification (CTC) scores in its autoregressive output. This paper aims to enhance SU performance on edge devices with limited resources. It pursues two intertwined goals: accelerating on-device execution and efficiently handling inputs that surpass the on-device model’s capacity. While these objectives are well-established, we introduce innovative solutions that specifically address SU’s distinctive challenges: 1. Late contextualization: Enables the parallel execution of a model’s attentive encoder during input ingestion. 2. Pilot decoding: Alleviates temporal load imbalances. 3. Autoregression offramps: Facilitate offloading decisions based on partial output sequences. Our techniques seamlessly integrate with existing SU models, pipelines, and frameworks, allowing for independent or combined application. Together, they constitute a hybrid solution for edge SU, exemplified by our prototype, XYZ. Evaluated on platforms equipped with 6-8 Arm cores, our system achieves State-of-the-Art (SOTA) accuracy, reducing end-to-end latency by 2x and halving offloading requirements.
PDF
点此查看论文截图
Weakly-Supervised Emotion Transition Learning for Diverse 3D Co-speech Gesture Generation
Authors:Xingqun Qi, Jiahao Pan, Peng Li, Ruibin Yuan, Xiaowei Chi, Mengfei Li, Wenhan Luo, Wei Xue, Shanghang Zhang, Qifeng Liu, Yike Guo
Generating vivid and emotional 3D co-speech gestures is crucial for virtual avatar animation in human-machine interaction applications. While the existing methods enable generating the gestures to follow a single emotion label, they overlook that long gesture sequence modeling with emotion transition is more practical in real scenes. In addition, the lack of large-scale available datasets with emotional transition speech and corresponding 3D human gestures also limits the addressing of this task. To fulfill this goal, we first incorporate the ChatGPT-4 and an audio inpainting approach to construct the high-fidelity emotion transition human speeches. Considering obtaining the realistic 3D pose annotations corresponding to the dynamically inpainted emotion transition audio is extremely difficult, we propose a novel weakly supervised training strategy to encourage authority gesture transitions. Specifically, to enhance the coordination of transition gestures w.r.t different emotional ones, we model the temporal association representation between two different emotional gesture sequences as style guidance and infuse it into the transition generation. We further devise an emotion mixture mechanism that provides weak supervision based on a learnable mixed emotion label for transition gestures. Last, we present a keyframe sampler to supply effective initial posture cues in long sequences, enabling us to generate diverse gestures. Extensive experiments demonstrate that our method outperforms the state-of-the-art models constructed by adapting single emotion-conditioned counterparts on our newly defined emotion transition task and datasets.
PDF The code and dataset will be released as soon as possible
点此查看论文截图
SyncTalk: The Devil is in the Synchronization for Talking Head Synthesis
Authors:Ziqiao Peng, Wentao Hu, Yue Shi, Xiangyu Zhu, Xiaomei Zhang, Hao Zhao, Jun He, Hongyan Liu, Zhaoxin Fan
Achieving high synchronization in the synthesis of realistic, speech-driven talking head videos presents a significant challenge. Traditional Generative Adversarial Networks (GAN) struggle to maintain consistent facial identity, while Neural Radiance Fields (NeRF) methods, although they can address this issue, often produce mismatched lip movements, inadequate facial expressions, and unstable head poses. A lifelike talking head requires synchronized coordination of subject identity, lip movements, facial expressions, and head poses. The absence of these synchronizations is a fundamental flaw, leading to unrealistic and artificial outcomes. To address the critical issue of synchronization, identified as the “devil” in creating realistic talking heads, we introduce SyncTalk. This NeRF-based method effectively maintains subject identity, enhancing synchronization and realism in talking head synthesis. SyncTalk employs a Face-Sync Controller to align lip movements with speech and innovatively uses a 3D facial blendshape model to capture accurate facial expressions. Our Head-Sync Stabilizer optimizes head poses, achieving more natural head movements. The Portrait-Sync Generator restores hair details and blends the generated head with the torso for a seamless visual experience. Extensive experiments and user studies demonstrate that SyncTalk outperforms state-of-the-art methods in synchronization and realism. We recommend watching the supplementary video: https://ziqiaopeng.github.io/synctalk
PDF 11 pages, 5 figures
点此查看论文截图
Vulnerability of Automatic Identity Recognition to Audio-Visual Deepfakes
Authors:Pavel Korshunov, Haolin Chen, Philip N. Garner, Sebastien Marcel
The task of deepfakes detection is far from being solved by speech or vision researchers. Several publicly available databases of fake synthetic video and speech were built to aid the development of detection methods. However, existing databases typically focus on visual or voice modalities and provide no proof that their deepfakes can in fact impersonate any real person. In this paper, we present the first realistic audio-visual database of deepfakes SWAN-DF, where lips and speech are well synchronized and video have high visual and audio qualities. We took the publicly available SWAN dataset of real videos with different identities to create audio-visual deepfakes using several models from DeepFaceLab and blending techniques for face swapping and HiFiVC, DiffVC, YourTTS, and FreeVC models for voice conversion. From the publicly available speech dataset LibriTTS, we also created a separate database of only audio deepfakes LibriTTS-DF using several latest text to speech methods: YourTTS, Adaspeech, and TorToiSe. We demonstrate the vulnerability of a state of the art speaker recognition system, such as ECAPA-TDNN-based model from SpeechBrain, to the synthetic voices. Similarly, we tested face recognition system based on the MobileFaceNet architecture to several variants of our visual deepfakes. The vulnerability assessment show that by tuning the existing pretrained deepfake models to specific identities, one can successfully spoof the face and speaker recognition systems in more than 90% of the time and achieve a very realistic looking and sounding fake video of a given person.
PDF 10 pages, 3 figures, 3 tables
点此查看论文截图
Mavericks at NADI 2023 Shared Task: Unravelling Regional Nuances through Dialect Identification using Transformer-based Approach
Authors:Vedant Deshpande, Yash Patwardhan, Kshitij Deshpande, Sudeep Mangalvedhekar, Ravindra Murumkar
In this paper, we present our approach for the “Nuanced Arabic Dialect Identification (NADI) Shared Task 2023”. We highlight our methodology for subtask 1 which deals with country-level dialect identification. Recognizing dialects plays an instrumental role in enhancing the performance of various downstream NLP tasks such as speech recognition and translation. The task uses the Twitter dataset (TWT-2023) that encompasses 18 dialects for the multi-class classification problem. Numerous transformer-based models, pre-trained on Arabic language, are employed for identifying country-level dialects. We fine-tune these state-of-the-art models on the provided dataset. The ensembling method is leveraged to yield improved performance of the system. We achieved an F1-score of 76.65 (11th rank on the leaderboard) on the test dataset.
PDF 5 pages, 1 figure, accepted at the NADI ArabicNLP Workshop, EMNLP 2023