NeRF


2023-11-28 更新

NeuRAD: Neural Rendering for Autonomous Driving

Authors:Adam Tonderski, Carl Lindström, Georg Hess, William Ljungbergh, Lennart Svensson, Christoffer Petersson

Neural radiance fields (NeRFs) have gained popularity in the autonomous driving (AD) community. Recent methods show NeRFs’ potential for closed-loop simulation, enabling testing of AD systems, and as an advanced training data augmentation technique. However, existing methods often require long training times, dense semantic supervision, or lack generalizability. This, in turn, hinders the application of NeRFs for AD at scale. In this paper, we propose NeuRAD, a robust novel view synthesis method tailored to dynamic AD data. Our method features simple network design, extensive sensor modeling for both camera and lidar — including rolling shutter, beam divergence and ray dropping — and is applicable to multiple datasets out of the box. We verify its performance on five popular AD datasets, achieving state-of-the-art performance across the board. To encourage further development, we openly release the NeuRAD source code. See https://github.com/georghess/NeuRAD .
PDF

点此查看论文截图

CaesarNeRF: Calibrated Semantic Representation for Few-shot Generalizable Neural Rendering

Authors:Haidong Zhu, Tianyu Ding, Tianyi Chen, Ilya Zharkov, Ram Nevatia, Luming Liang

Generalizability and few-shot learning are key challenges in Neural Radiance Fields (NeRF), often due to the lack of a holistic understanding in pixel-level rendering. We introduce CaesarNeRF, an end-to-end approach that leverages scene-level CAlibratEd SemAntic Representation along with pixel-level representations to advance few-shot, generalizable neural rendering, facilitating a holistic understanding without compromising high-quality details. CaesarNeRF explicitly models pose differences of reference views to combine scene-level semantic representations, providing a calibrated holistic understanding. This calibration process aligns various viewpoints with precise location and is further enhanced by sequential refinement to capture varying details. Extensive experiments on public datasets, including LLFF, Shiny, mip-NeRF 360, and MVImgNet, show that CaesarNeRF delivers state-of-the-art performance across varying numbers of reference views, proving effective even with a single reference image. The project page of this work can be found at https://haidongz-usc.github.io/project/caesarnerf.
PDF

点此查看论文截图

Animatable Gaussians: Learning Pose-dependent Gaussian Maps for High-fidelity Human Avatar Modeling

Authors:Zhe Li, Zerong Zheng, Lizhen Wang, Yebin Liu

Modeling animatable human avatars from RGB videos is a long-standing and challenging problem. Recent works usually adopt MLP-based neural radiance fields (NeRF) to represent 3D humans, but it remains difficult for pure MLPs to regress pose-dependent garment details. To this end, we introduce Animatable Gaussians, a new avatar representation that leverages powerful 2D CNNs and 3D Gaussian splatting to create high-fidelity avatars. To associate 3D Gaussians with the animatable avatar, we learn a parametric template from the input videos, and then parameterize the template on two front \& back canonical Gaussian maps where each pixel represents a 3D Gaussian. The learned template is adaptive to the wearing garments for modeling looser clothes like dresses. Such template-guided 2D parameterization enables us to employ a powerful StyleGAN-based CNN to learn the pose-dependent Gaussian maps for modeling detailed dynamic appearances. Furthermore, we introduce a pose projection strategy for better generalization given novel poses. Overall, our method can create lifelike avatars with dynamic, realistic and generalized appearances. Experiments show that our method outperforms other state-of-the-art approaches. Code: https://github.com/lizhe00/AnimatableGaussians
PDF Projectpage: https://animatable-gaussians.github.io/, Code: https://github.com/lizhe00/AnimatableGaussians

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录