对抗攻击


2023-11-28 更新

Trainwreck: A damaging adversarial attack on image classifiers

Authors:Jan Zahálka

Adversarial attacks are an important security concern for computer vision (CV), as they enable malicious attackers to reliably manipulate CV models. Existing attacks aim to elicit an output desired by the attacker, but keep the model fully intact on clean data. With CV models becoming increasingly valuable assets in applied practice, a new attack vector is emerging: disrupting the models as a form of economic sabotage. This paper opens up the exploration of damaging adversarial attacks (DAAs) that seek to damage the target model and maximize the total cost incurred by the damage. As a pioneer DAA, this paper proposes Trainwreck, a train-time attack that poisons the training data of image classifiers to degrade their performance. Trainwreck conflates the data of similar classes using stealthy ($\epsilon \leq 8/255$) class-pair universal perturbations computed using a surrogate model. Trainwreck is a black-box, transferable attack: it requires no knowledge of the target model’s architecture, and a single poisoned dataset degrades the performance of any model trained on it. The experimental evaluation on CIFAR-10 and CIFAR-100 demonstrates that Trainwreck is indeed an effective attack across various model architectures including EfficientNetV2, ResNeXt-101, and a finetuned ViT-L-16. The strength of the attack can be customized by the poison rate parameter. Finally, data redundancy with file hashing and/or pixel difference are identified as a reliable defense technique against Trainwreck or similar DAAs. The code is available at https://github.com/JanZahalka/trainwreck.
PDF

点此查看论文截图

Instruct2Attack: Language-Guided Semantic Adversarial Attacks

Authors:Jiang Liu, Chen Wei, Yuxiang Guo, Heng Yu, Alan Yuille, Soheil Feizi, Chun Pong Lau, Rama Chellappa

We propose Instruct2Attack (I2A), a language-guided semantic attack that generates semantically meaningful perturbations according to free-form language instructions. We make use of state-of-the-art latent diffusion models, where we adversarially guide the reverse diffusion process to search for an adversarial latent code conditioned on the input image and text instruction. Compared to existing noise-based and semantic attacks, I2A generates more natural and diverse adversarial examples while providing better controllability and interpretability. We further automate the attack process with GPT-4 to generate diverse image-specific text instructions. We show that I2A can successfully break state-of-the-art deep neural networks even under strong adversarial defenses, and demonstrate great transferability among a variety of network architectures.
PDF under submission, code coming soon

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录