Diffusion Models


2023-11-28 更新

FLAIR: A Conditional Diffusion Framework with Applications to Face Video Restoration

Authors:Zihao Zou, Jiaming Liu, Shirin Shoushtari, Yubo Wang, Weijie Gan, Ulugbek S. Kamilov

Face video restoration (FVR) is a challenging but important problem where one seeks to recover a perceptually realistic face videos from a low-quality input. While diffusion probabilistic models (DPMs) have been shown to achieve remarkable performance for face image restoration, they often fail to preserve temporally coherent, high-quality videos, compromising the fidelity of reconstructed faces. We present a new conditional diffusion framework called FLAIR for FVR. FLAIR ensures temporal consistency across frames in a computationally efficient fashion by converting a traditional image DPM into a video DPM. The proposed conversion uses a recurrent video refinement layer and a temporal self-attention at different scales. FLAIR also uses a conditional iterative refinement process to balance the perceptual and distortion quality during inference. This process consists of two key components: a data-consistency module that analytically ensures that the generated video precisely matches its degraded observation and a coarse-to-fine image enhancement module specifically for facial regions. Our extensive experiments show superiority of FLAIR over the current state-of-the-art (SOTA) for video super-resolution, deblurring, JPEG restoration, and space-time frame interpolation on two high-quality face video datasets.
PDF 32 pages, 27 figures

点此查看论文截图

AerialBooth: Mutual Information Guidance for Text Controlled Aerial View Synthesis from a Single Image

Authors:Divya Kothandaraman, Tianyi Zhou, Ming Lin, Dinesh Manocha

We present a novel method, AerialBooth, for synthesizing the aerial view from a single input image using its text description. We leverage the pretrained text-to-2D image stable diffusion model as prior knowledge of the 3D world. The model is finetuned in two steps to optimize for the text embedding and the UNet that reconstruct the input image and its inverse perspective mapping respectively. The inverse perspective mapping creates variance within the text-image space of the diffusion model, while providing weak guidance for aerial view synthesis. At inference, we steer the contents of the generated image towards the input image using novel mutual information guidance that maximizes the information content between the probability distributions of the two images. We evaluate our approach on a wide spectrum of real and synthetic data, including natural scenes, indoor scenes, human action, etc. Through extensive experiments and ablation studies, we demonstrate the effectiveness of AerialBooth and also its generalizability to other text-controlled views. We also show that AerialBooth achieves the best viewpoint-fidelity trade-off though quantitative evaluation on 7 metrics analyzing viewpoint and fidelity w.r.t. input image. Code and data is available at https://github.com/divyakraman/AerialBooth2023.
PDF

点此查看论文截图

Efficient Dataset Distillation via Minimax Diffusion

Authors:Jianyang Gu, Saeed Vahidian, Vyacheslav Kungurtsev, Haonan Wang, Wei Jiang, Yang You, Yiran Chen

Dataset distillation reduces the storage and computational consumption of training a network by generating a small surrogate dataset that encapsulates rich information of the original large-scale one. However, previous distillation methods heavily rely on the sample-wise iterative optimization scheme. As the images-per-class (IPC) setting or image resolution grows larger, the necessary computation will demand overwhelming time and resources. In this work, we intend to incorporate generative diffusion techniques for computing the surrogate dataset. Observing that key factors for constructing an effective surrogate dataset are representativeness and diversity, we design additional minimax criteria in the generative training to enhance these facets for the generated images of diffusion models. We present a theoretical model of the process as hierarchical diffusion control demonstrating the flexibility of the diffusion process to target these criteria without jeopardizing the faithfulness of the sample to the desired distribution. The proposed method achieves state-of-the-art validation performance while demanding much less computational resources. Under the 100-IPC setting on ImageWoof, our method requires less than one-twentieth the distillation time of previous methods, yet yields even better performance. Source code available in https://github.com/vimar-gu/MinimaxDiffusion.
PDF

点此查看论文截图

Instruct2Attack: Language-Guided Semantic Adversarial Attacks

Authors:Jiang Liu, Chen Wei, Yuxiang Guo, Heng Yu, Alan Yuille, Soheil Feizi, Chun Pong Lau, Rama Chellappa

We propose Instruct2Attack (I2A), a language-guided semantic attack that generates semantically meaningful perturbations according to free-form language instructions. We make use of state-of-the-art latent diffusion models, where we adversarially guide the reverse diffusion process to search for an adversarial latent code conditioned on the input image and text instruction. Compared to existing noise-based and semantic attacks, I2A generates more natural and diverse adversarial examples while providing better controllability and interpretability. We further automate the attack process with GPT-4 to generate diverse image-specific text instructions. We show that I2A can successfully break state-of-the-art deep neural networks even under strong adversarial defenses, and demonstrate great transferability among a variety of network architectures.
PDF under submission, code coming soon

点此查看论文截图

Authors:Aboli Marathe

Large vision-language models are steadily gaining personalization capabilities at the cost of fine-tuning or data augmentation. We present two models for image generation using model-agnostic learning that align semantic priors with generative capabilities. RLDF, or Reinforcement Learning from Diffusion Feedback, is a singular approach for visual imitation through prior-preserving reward function guidance. This employs Q-learning (with standard Q*) for generation and follows a semantic-rewarded trajectory for image search through finite encoding-tailored actions. The second proposed method, noisy diffusion gradient, is optimization driven. At the root of both methods is a special CFG encoding that we propose for continual semantic guidance. Using only a single input image and no text input, RLDF generates high-quality images over varied domains including retail, sports and agriculture showcasing class-consistency and strong visual diversity. Project website is available at https://infernolia.github.io/RLDF.
PDF

点此查看论文截图

Regularization by Texts for Latent Diffusion Inverse Solvers

Authors:Jeongsol Kim, Geon Yeong Park, Hyungjin Chung, Jong Chul Ye

The recent advent of diffusion models has led to significant progress in solving inverse problems, leveraging these models as effective generative priors. Nonetheless, challenges related to the ill-posed nature of such problems remain, often due to inherent ambiguities in measurements. Drawing inspiration from the human ability to resolve visual ambiguities through perceptual biases, here we introduce a novel latent diffusion inverse solver by incorporating regularization by texts (TReg). Specifically, TReg applies the textual description of the preconception of the solution during the reverse sampling phase, of which description isndynamically reinforced through null-text optimization for adaptive negation. Our comprehensive experimental results demonstrate that TReg successfully mitigates ambiguity in latent diffusion inverse solvers, enhancing their effectiveness and accuracy.
PDF

点此查看论文截图

Enhancing Perceptual Quality in Video Super-Resolution through Temporally-Consistent Detail Synthesis using Diffusion Models

Authors:Claudio Rota, Marco Buzzelli, Joost van de Weijer

In this paper, we address the problem of video super-resolution (VSR) using Diffusion Models (DM), and present StableVSR. Our method significantly enhances the perceptual quality of upscaled videos by synthesizing realistic and temporally-consistent details. We turn a pre-trained DM for single image super-resolution into a VSR method by introducing the Temporal Conditioning Module (TCM). TCM uses Temporal Texture Guidance, which provides spatially-aligned and detail-rich texture information synthesized in adjacent frames. This guides the generative process of the current frame toward high-quality and temporally-consistent results. We introduce a Frame-wise Bidirectional Sampling strategy to encourage the use of information from past to future and vice-versa. This strategy improves the perceptual quality of the results and the temporal consistency across frames. We demonstrate the effectiveness of StableVSR in enhancing the perceptual quality of upscaled videos compared to existing state-of-the-art methods for VSR. The code is available at https://github.com/claudiom4sir/StableVSR.
PDF

点此查看论文截图

Direct2.5: Diverse Text-to-3D Generation via Multi-view 2.5D Diffusion

Authors:Yuanxun Lu, Jingyang Zhang, Shiwei Li, Tian Fang, David McKinnon, Yanghai Tsin, Long Quan, Xun Cao, Yao Yao

Recent advances in generative AI have unveiled significant potential for the creation of 3D content. However, current methods either apply a pre-trained 2D diffusion model with the time-consuming score distillation sampling (SDS), or a direct 3D diffusion model trained on limited 3D data losing generation diversity. In this work, we approach the problem by employing a multi-view 2.5D diffusion fine-tuned from a pre-trained 2D diffusion model. The multi-view 2.5D diffusion directly models the structural distribution of 3D data, while still maintaining the strong generalization ability of the original 2D diffusion model, filling the gap between 2D diffusion-based and direct 3D diffusion-based methods for 3D content generation. During inference, multi-view normal maps are generated using the 2.5D diffusion, and a novel differentiable rasterization scheme is introduced to fuse the almost consistent multi-view normal maps into a consistent 3D model. We further design a normal-conditioned multi-view image generation module for fast appearance generation given the 3D geometry. Our method is a one-pass diffusion process and does not require any SDS optimization as post-processing. We demonstrate through extensive experiments that, our direct 2.5D generation with the specially-designed fusion scheme can achieve diverse, mode-seeking-free, and high-fidelity 3D content generation in only 10 seconds. Project page: https://nju-3dv.github.io/projects/direct25.
PDF Project webpage: https://nju-3dv.github.io/projects/direct25

点此查看论文截图

DiffAnt: Diffusion Models for Action Anticipation

Authors:Zeyun Zhong, Chengzhi Wu, Manuel Martin, Michael Voit, Juergen Gall, Jürgen Beyerer

Anticipating future actions is inherently uncertain. Given an observed video segment containing ongoing actions, multiple subsequent actions can plausibly follow. This uncertainty becomes even larger when predicting far into the future. However, the majority of existing action anticipation models adhere to a deterministic approach, neglecting to account for future uncertainties. In this work, we rethink action anticipation from a generative view, employing diffusion models to capture different possible future actions. In this framework, future actions are iteratively generated from standard Gaussian noise in the latent space, conditioned on the observed video, and subsequently transitioned into the action space. Extensive experiments on four benchmark datasets, i.e., Breakfast, 50Salads, EpicKitchens, and EGTEA Gaze+, are performed and the proposed method achieves superior or comparable results to state-of-the-art methods, showing the effectiveness of a generative approach for action anticipation. Our code and trained models will be published on GitHub.
PDF

点此查看论文截图

Self-correcting LLM-controlled Diffusion Models

Authors:Tsung-Han Wu, Long Lian, Joseph E. Gonzalez, Boyi Li, Trevor Darrell

Text-to-image generation has witnessed significant progress with the advent of diffusion models. Despite the ability to generate photorealistic images, current text-to-image diffusion models still often struggle to accurately interpret and follow complex input text prompts. In contrast to existing models that aim to generate images only with their best effort, we introduce Self-correcting LLM-controlled Diffusion (SLD). SLD is a framework that generates an image from the input prompt, assesses its alignment with the prompt, and performs self-corrections on the inaccuracies in the generated image. Steered by an LLM controller, SLD turns text-to-image generation into an iterative closed-loop process, ensuring correctness in the resulting image. SLD is not only training-free but can also be seamlessly integrated with diffusion models behind API access, such as DALL-E 3, to further boost the performance of state-of-the-art diffusion models. Experimental results show that our approach can rectify a majority of incorrect generations, particularly in generative numeracy, attribute binding, and spatial relationships. Furthermore, by simply adjusting the instructions to the LLM, SLD can perform image editing tasks, bridging the gap between text-to-image generation and image editing pipelines. We will make our code available for future research and applications.
PDF 16 pages, 10 figures

点此查看论文截图

Street TryOn: Learning In-the-Wild Virtual Try-On from Unpaired Person Images

Authors:Aiyu Cui, Jay Mahajan, Viraj Shah, Preeti Gomathinayagam, Svetlana Lazebnik

Virtual try-on has become a popular research topic, but most existing methods focus on studio images with a clean background. They can achieve plausible results for this studio try-on setting by learning to warp a garment image to fit a person’s body from paired training data, i.e., garment images paired with images of people wearing the same garment. Such data is often collected from commercial websites, where each garment is demonstrated both by itself and on several models. By contrast, it is hard to collect paired data for in-the-wild scenes, and therefore, virtual try-on for casual images of people against cluttered backgrounds is rarely studied. In this work, we fill the gap in the current virtual try-on research by (1) introducing a Street TryOn benchmark to evaluate performance on street scenes and (2) proposing a novel method that can learn without paired data, from a set of in-the-wild person images directly. Our method can achieve robust performance across shop and street domains using a novel DensePose warping correction method combined with diffusion-based inpainting controlled by pose and semantic segmentation. Our experiments demonstrate competitive performance for standard studio try-on tasks and SOTA performance for street try-on and cross-domain try-on tasks.
PDF

点此查看论文截图

Test-time Adaptation of Discriminative Models via Diffusion Generative Feedback

Authors:Mihir Prabhudesai, Tsung-Wei Ke, Alexander C. Li, Deepak Pathak, Katerina Fragkiadaki

The advancements in generative modeling, particularly the advent of diffusion models, have sparked a fundamental question: how can these models be effectively used for discriminative tasks? In this work, we find that generative models can be great test-time adapters for discriminative models. Our method, Diffusion-TTA, adapts pre-trained discriminative models such as image classifiers, segmenters and depth predictors, to each unlabelled example in the test set using generative feedback from a diffusion model. We achieve this by modulating the conditioning of the diffusion model using the output of the discriminative model. We then maximize the image likelihood objective by backpropagating the gradients to discriminative model’s parameters. We show Diffusion-TTA significantly enhances the accuracy of various large-scale pre-trained discriminative models, such as, ImageNet classifiers, CLIP models, image pixel labellers and image depth predictors. Diffusion-TTA outperforms existing test-time adaptation methods, including TTT-MAE and TENT, and particularly shines in online adaptation setups, where the discriminative model is continually adapted to each example in the test set. We provide access to code, results, and visualizations on our website: https://diffusion-tta.github.io/.
PDF Accepted at NeurIPS 2023 Webpage with Code: https://diffusion-tta.github.io/

点此查看论文截图

2023-11-28 更新

Diffusion models meet image counter-forensics

Authors:Matías Tailanian, Marina Gardella, Álvaro Pardo, Pablo Musé

From its acquisition in the camera sensors to its storage, different operations are performed to generate the final image. This pipeline imprints specific traces into the image to form a natural watermark. Tampering with an image disturbs these traces; these disruptions are clues that are used by most methods to detect and locate forgeries. In this article, we assess the capabilities of diffusion models to erase the traces left by forgers and, therefore, deceive forensics methods. Such an approach has been recently introduced for adversarial purification, achieving significant performance. We show that diffusion purification methods are well suited for counter-forensics tasks. Such approaches outperform already existing counter-forensics techniques both in deceiving forensics methods and in preserving the natural look of the purified images. The source code is publicly available at https://github.com/mtailanian/diff-cf.
PDF

点此查看论文截图

Continual Learning of Diffusion Models with Generative Distillation

Authors:Sergi Masip, Pau Rodriguez, Tinne Tuytelaars, Gido M. van de Ven

Diffusion models are powerful generative models that achieve state-of-the-art performance in tasks such as image synthesis. However, training them demands substantial amounts of data and computational resources. Continual learning would allow for incrementally learning new tasks and accumulating knowledge, thus reusing already trained models would be possible. One potentially suitable approach is generative replay, where a copy of a generative model trained on previous tasks produces synthetic data that are interleaved with data from the current task. However, standard generative replay applied to diffusion models results in a catastrophic loss in denoising capabilities. In this paper, we propose generative distillation, an approach that distils the entire reverse process of a diffusion model. We demonstrate that our approach significantly improves the continual learning performance of generative replay with only a moderate increase in the computational costs.
PDF

点此查看论文截图

Image Super-Resolution with Text Prompt Diffusion

Authors:Zheng Chen, Yulun Zhang, Jinjin Gu, Xin Yuan, Linghe Kong, Guihai Chen, Xiaokang Yang

Image super-resolution (SR) methods typically model degradation to improve reconstruction accuracy in complex and unknown degradation scenarios. However, extracting degradation information from low-resolution images is challenging, which limits the model performance. To boost image SR performance, one feasible approach is to introduce additional priors. Inspired by advancements in multi-modal methods and text prompt image processing, we introduce text prompts to image SR to provide degradation priors. Specifically, we first design a text-image generation pipeline to integrate text into SR dataset through the text degradation representation and degradation model. The text representation applies a discretization manner based on the binning method to describe the degradation abstractly. This representation method can also maintain the flexibility of language. Meanwhile, we propose the PromptSR to realize the text prompt SR. The PromptSR employs the diffusion model and the pre-trained language model (e.g., T5 and CLIP). We train the model on the generated text-image dataset. Extensive experiments indicate that introducing text prompts into image SR, yields excellent results on both synthetic and real-world images. Code: https://github.com/zhengchen1999/PromptSR.
PDF Code is available at https://github.com/zhengchen1999/PromptSR

点此查看论文截图

Paragraph-to-Image Generation with Information-Enriched Diffusion Model

Authors:Weijia Wu, Zhuang Li, Yefei He, Mike Zheng Shou, Chunhua Shen, Lele Cheng, Yan Li, Tingting Gao, Di Zhang, Zhongyuan Wang

Text-to-image (T2I) models have recently experienced rapid development, achieving astonishing performance in terms of fidelity and textual alignment capabilities. However, given a long paragraph (up to 512 words), these generation models still struggle to achieve strong alignment and are unable to generate images depicting complex scenes. In this paper, we introduce an information-enriched diffusion model for paragraph-to-image generation task, termed ParaDiffusion, which delves into the transference of the extensive semantic comprehension capabilities of large language models to the task of image generation. At its core is using a large language model (e.g., Llama V2) to encode long-form text, followed by fine-tuning with LORA to alignthe text-image feature spaces in the generation task. To facilitate the training of long-text semantic alignment, we also curated a high-quality paragraph-image pair dataset, namely ParaImage. This dataset contains a small amount of high-quality, meticulously annotated data, and a large-scale synthetic dataset with long text descriptions being generated using a vision-language model. Experiments demonstrate that ParaDiffusion outperforms state-of-the-art models (SD XL, DeepFloyd IF) on ViLG-300 and ParaPrompts, achieving up to 15% and 45% human voting rate improvements for visual appeal and text faithfulness, respectively. The code and dataset will be released to foster community research on long-text alignment.
PDF The project website is at: https://weijiawu.github.io/ParaDiffusionPage/. Code: https://github.com/weijiawu/ParaDiffusion

点此查看论文截图

Decouple Content and Motion for Conditional Image-to-Video Generation

Authors:Cuifeng Shen, Yulu Gan, Chen Chen, Xiongwei Zhu, Lele Cheng, Jinzhi Wang

The goal of conditional image-to-video (cI2V) generation is to create a believable new video by beginning with the condition, i.e., one image and text.The previous cI2V generation methods conventionally perform in RGB pixel space, with limitations in modeling motion consistency and visual continuity. Additionally, the efficiency of generating videos in pixel space is quite low.In this paper, we propose a novel approach to address these challenges by disentangling the target RGB pixels into two distinct components: spatial content and temporal motions. Specifically, we predict temporal motions which include motion vector and residual based on a 3D-UNet diffusion model. By explicitly modeling temporal motions and warping them to the starting image, we improve the temporal consistency of generated videos. This results in a reduction of spatial redundancy, emphasizing temporal details. Our proposed method achieves performance improvements by disentangling content and motion, all without introducing new structural complexities to the model. Extensive experiments on various datasets confirm our approach’s superior performance over the majority of state-of-the-art methods in both effectiveness and efficiency.
PDF

点此查看论文截图

Highly Detailed and Temporal Consistent Video Stylization via Synchronized Multi-Frame Diffusion

Authors:Minshan Xie, Hanyuan Liu, Chengze Li, Tien-Tsin Wong

Text-guided video-to-video stylization transforms the visual appearance of a source video to a different appearance guided on textual prompts. Existing text-guided image diffusion models can be extended for stylized video synthesis. However, they struggle to generate videos with both highly detailed appearance and temporal consistency. In this paper, we propose a synchronized multi-frame diffusion framework to maintain both the visual details and the temporal consistency. Frames are denoised in a synchronous fashion, and more importantly, information of different frames is shared since the beginning of the denoising process. Such information sharing ensures that a consensus, in terms of the overall structure and color distribution, among frames can be reached in the early stage of the denoising process before it is too late. The optical flow from the original video serves as the connection, and hence the venue for information sharing, among frames. We demonstrate the effectiveness of our method in generating high-quality and diverse results in extensive experiments. Our method shows superior qualitative and quantitative results compared to state-of-the-art video editing methods.
PDF 11 pages, 11 figures

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录