2023-11-27 更新
Descriptor and Word Soups: Overcoming the Parameter Efficiency Accuracy Tradeoff for Out-of-Distribution Few-shot Learning
Authors:Christopher Liao, Theodoros Tsiligkaridis, Brian Kulis
Over the past year, a large body of multimodal research has emerged around zero-shot evaluation using GPT descriptors. These studies boost the zero-shot accuracy of pretrained VL models with an ensemble of label-specific text generated by GPT. A recent study, WaffleCLIP, demonstrated that similar zero-shot accuracy can be achieved with an ensemble of random descriptors. However, both zero-shot methods are un-trainable and consequently sub-optimal when some few-shot out-of-distribution (OOD) training data is available. Inspired by these prior works, we present two more flexible methods called descriptor and word soups, which do not require an LLM at test time and can leverage training data to increase OOD target accuracy. Descriptor soup greedily selects a small set of textual descriptors using generic few-shot training data, then calculates robust class embeddings using the selected descriptors. Word soup greedily assembles a chain of words in a similar manner. Compared to existing few-shot soft prompt tuning methods, word soup requires fewer parameters by construction and less GPU memory, since it does not require backpropagation. Both soups outperform current published few-shot methods, even when combined with SoTA zero-shot methods, on cross-dataset and domain generalization benchmarks. Compared with SoTA prompt and descriptor ensembling methods, such as ProDA and WaffleCLIP, word soup achieves higher OOD accuracy with fewer ensemble members. Please checkout our code: github.com/Chris210634/word_soups
PDF
点此查看论文截图
Machine Translation for Ge’ez Language
Authors:Aman Kassahun Wassie
Machine translation (MT) for low-resource languages such as Ge’ez, an ancient language that is no longer spoken in daily life, faces challenges such as out-of-vocabulary words, domain mismatches, and lack of sufficient labeled training data. In this work, we explore various methods to improve Ge’ez MT, including transfer-learning from related languages, optimizing shared vocabulary and token segmentation approaches, finetuning large pre-trained models, and using large language models (LLMs) for few-shot translation with fuzzy matches. We develop a multilingual neural machine translation (MNMT) model based on languages relatedness, which brings an average performance improvement of about 4 BLEU compared to standard bilingual models. We also attempt to finetune the NLLB-200 model, one of the most advanced translation models available today, but find that it performs poorly with only 4k training samples for Ge’ez. Furthermore, we experiment with using GPT-3.5, a state-of-the-art LLM, for few-shot translation with fuzzy matches, which leverages embedding similarity-based retrieval to find context examples from a parallel corpus. We observe that GPT-3.5 achieves a remarkable BLEU score of 9.2 with no initial knowledge of Ge’ez, but still lower than the MNMT baseline of 15.2. Our work provides insights into the potential and limitations of different approaches for low-resource and ancient language MT.
PDF 10 pages, 1 figure
点此查看论文截图
SEGIC: Unleashing the Emergent Correspondence for In-Context Segmentation
Authors:Lingchen Meng, Shiyi Lan, Hengduo Li, Jose M. Alvarez, Zuxuan Wu, Yu-Gang Jiang
In-context segmentation aims at segmenting novel images using a few labeled example images, termed as “in-context examples”, exploring content similarities between examples and the target. The resulting models can be generalized seamlessly to novel segmentation tasks, significantly reducing the labeling and training costs compared with conventional pipelines. However, in-context segmentation is more challenging than classic ones due to its meta-learning nature, requiring the model to learn segmentation rules conditioned on a few samples, not just the segmentation. Unlike previous work with ad-hoc or non-end-to-end designs, we propose SEGIC, an end-to-end segment-in-context framework built upon a single vision foundation model (VFM). In particular, SEGIC leverages the emergent correspondence within VFM to capture dense relationships between target images and in-context samples. As such, information from in-context samples is then extracted into three types of instructions, i.e. geometric, visual, and meta instructions, serving as explicit conditions for the final mask prediction. SEGIC is a straightforward yet effective approach that yields state-of-the-art performance on one-shot segmentation benchmarks. Notably, SEGIC can be easily generalized to diverse tasks, including video object segmentation and open-vocabulary segmentation. Code will be available at \url{https://github.com/MengLcool/SEGIC}.
PDF