2023-11-27 更新
Multi-modal In-Context Learning Makes an Ego-evolving Scene Text Recognizer
Authors:Zhen Zhao, Jingqun Tang, Chunhui Lin, Binghong Wu, Hao Liu, Zhizhong Zhang, Xin Tan, Can Huang, Yuan Xie
Scene text recognition (STR) in the wild frequently encounters challenges when coping with domain variations, font diversity, shape deformations, etc. A straightforward solution is performing model fine-tuning tailored to a specific scenario, but it is computationally intensive and requires multiple model copies for various scenarios. Recent studies indicate that large language models (LLMs) can learn from a few demonstration examples in a training-free manner, termed “In-Context Learning” (ICL). Nevertheless, applying LLMs as a text recognizer is unacceptably resource-consuming. Moreover, our pilot experiments on LLMs show that ICL fails in STR, mainly attributed to the insufficient incorporation of contextual information from diverse samples in the training stage. To this end, we introduce E$^2$STR, a STR model trained with context-rich scene text sequences, where the sequences are generated via our proposed in-context training strategy. E$^2$STR demonstrates that a regular-sized model is sufficient to achieve effective ICL capabilities in STR. Extensive experiments show that E$^2$STR exhibits remarkable training-free adaptation in various scenarios and outperforms even the fine-tuned state-of-the-art approaches on public benchmarks.
PDF
点此查看论文截图
Periodically Exchange Teacher-Student for Source-Free Object Detection
Authors:Qipeng Liu, Luojun Lin, Zhifeng Shen, Zhifeng Yang
Source-free object detection (SFOD) aims to adapt the source detector to unlabeled target domain data in the absence of source domain data. Most SFOD methods follow the same self-training paradigm using mean-teacher (MT) framework where the student model is guided by only one single teacher model. However, such paradigm can easily fall into a training instability problem that when the teacher model collapses uncontrollably due to the domain shift, the student model also suffers drastic performance degradation. To address this issue, we propose the Periodically Exchange Teacher-Student (PETS) method, a simple yet novel approach that introduces a multiple-teacher framework consisting of a static teacher, a dynamic teacher, and a student model. During the training phase, we periodically exchange the weights between the static teacher and the student model. Then, we update the dynamic teacher using the moving average of the student model that has already been exchanged by the static teacher. In this way, the dynamic teacher can integrate knowledge from past periods, effectively reducing error accumulation and enabling a more stable training process within the MT-based framework. Further, we develop a consensus mechanism to merge the predictions of two teacher models to provide higher-quality pseudo labels for student model. Extensive experiments on multiple SFOD benchmarks show that the proposed method achieves state-of-the-art performance compared with other related methods, demonstrating the effectiveness and superiority of our method on SFOD task.
PDF ICCV 2023
点此查看论文截图
Class Balanced Dynamic Acquisition for Domain Adaptive Semantic Segmentation using Active Learning
Authors:Marc Schachtsiek, Simone Rossi, Thomas Hannagan
Domain adaptive active learning is leading the charge in label-efficient training of neural networks. For semantic segmentation, state-of-the-art models jointly use two criteria of uncertainty and diversity to select training labels, combined with a pixel-wise acquisition strategy. However, we show that such methods currently suffer from a class imbalance issue which degrades their performance for larger active learning budgets. We then introduce Class Balanced Dynamic Acquisition (CBDA), a novel active learning method that mitigates this issue, especially in high-budget regimes. The more balanced labels increase minority class performance, which in turn allows the model to outperform the previous baseline by 0.6, 1.7, and 2.4 mIoU for budgets of 5%, 10%, and 20%, respectively. Additionally, the focus on minority classes leads to improvements of the minimum class performance of 0.5, 2.9, and 4.6 IoU respectively. The top-performing model even exceeds the fully supervised baseline, showing that a more balanced label than the entire ground truth can be beneficial.
PDF NeurIPS 2023 Workshop on Adaptive Experimental Design and Active Learning in the Real World
点此查看论文截图
Multi-modal Instance Refinement for Cross-domain Action Recognition
Authors:Yuan Qing, Naixing Wu, Shaohua Wan, Lixin Duan
Unsupervised cross-domain action recognition aims at adapting the model trained on an existing labeled source domain to a new unlabeled target domain. Most existing methods solve the task by directly aligning the feature distributions of source and target domains. However, this would cause negative transfer during domain adaptation due to some negative training samples in both domains. In the source domain, some training samples are of low-relevance to target domain due to the difference in viewpoints, action styles, etc. In the target domain, there are some ambiguous training samples that can be easily classified as another type of action under the case of source domain. The problem of negative transfer has been explored in cross-domain object detection, while it remains under-explored in cross-domain action recognition. Therefore, we propose a Multi-modal Instance Refinement (MMIR) method to alleviate the negative transfer based on reinforcement learning. Specifically, a reinforcement learning agent is trained in both domains for every modality to refine the training data by selecting out negative samples from each domain. Our method finally outperforms several other state-of-the-art baselines in cross-domain action recognition on the benchmark EPIC-Kitchens dataset, which demonstrates the advantage of MMIR in reducing negative transfer.
PDF Accepted by PRCV 2023
点此查看论文截图
Robust Domain Misinformation Detection via Multi-modal Feature Alignment
Authors:Hui Liu, Wenya Wang, Hao Sun, Anderson Rocha, Haoliang Li
Social media misinformation harms individuals and societies and is potentialized by fast-growing multi-modal content (i.e., texts and images), which accounts for higher “credibility” than text-only news pieces. Although existing supervised misinformation detection methods have obtained acceptable performances in key setups, they may require large amounts of labeled data from various events, which can be time-consuming and tedious. In turn, directly training a model by leveraging a publicly available dataset may fail to generalize due to domain shifts between the training data (a.k.a. source domains) and the data from target domains. Most prior work on domain shift focuses on a single modality (e.g., text modality) and ignores the scenario where sufficient unlabeled target domain data may not be readily available in an early stage. The lack of data often happens due to the dynamic propagation trend (i.e., the number of posts related to fake news increases slowly before catching the public attention). We propose a novel robust domain and cross-modal approach (\textbf{RDCM}) for multi-modal misinformation detection. It reduces the domain shift by aligning the joint distribution of textual and visual modalities through an inter-domain alignment module and bridges the semantic gap between both modalities through a cross-modality alignment module. We also propose a framework that simultaneously considers application scenarios of domain generalization (in which the target domain data is unavailable) and domain adaptation (in which unlabeled target domain data is available). Evaluation results on two public multi-modal misinformation detection datasets (Pheme and Twitter Datasets) evince the superiority of the proposed model. The formal implementation of this paper can be found in this link: https://github.com/less-and-less-bugs/RDCM
PDF Accepted by TIFS 2023
点此查看论文截图
Finding Foundation Models for Time Series Classification with a PreText Task
Authors:Ali Ismail-Fawaz, Maxime Devanne, Stefano Berretti, Jonathan Weber, Germain Forestier
Over the past decade, Time Series Classification (TSC) has gained an increasing attention. While various methods were explored, deep learning - particularly through Convolutional Neural Networks (CNNs)-stands out as an effective approach. However, due to the limited availability of training data, defining a foundation model for TSC that overcomes the overfitting problem is still a challenging task. The UCR archive, encompassing a wide spectrum of datasets ranging from motion recognition to ECG-based heart disease detection, serves as a prime example for exploring this issue in diverse TSC scenarios. In this paper, we address the overfitting challenge by introducing pre-trained domain foundation models. A key aspect of our methodology is a novel pretext task that spans multiple datasets. This task is designed to identify the originating dataset of each time series sample, with the goal of creating flexible convolution filters that can be applied across different datasets. The research process consists of two phases: a pre-training phase where the model acquires general features through the pretext task, and a subsequent fine-tuning phase for specific dataset classifications. Our extensive experiments on the UCR archive demonstrate that this pre-training strategy significantly outperforms the conventional training approach without pre-training. This strategy effectively reduces overfitting in small datasets and provides an efficient route for adapting these models to new datasets, thus advancing the capabilities of deep learning in TSC.
PDF