无监督/半监督/对比学习


2023-11-25 更新

Rich and Poor Texture Contrast: A Simple yet Effective Approach for AI-generated Image Detection

Authors:Nan Zhong, Yiran Xu, Zhenxing Qian, Xinpeng Zhang

Recent generative models show impressive performance in generating photographic images. Humans can hardly distinguish such incredibly realistic-looking AI-generated images from real ones. AI-generated images may lead to ubiquitous disinformation dissemination. Therefore, it is of utmost urgency to develop a detector to identify AI-generated images. Most existing detectors suffer from sharp performance drops over unseen generative models. In this paper, we propose a novel AI-generated image detector capable of identifying fake images created by a wide range of generative models. Our approach leverages the inter-pixel correlation contrast between rich and poor texture regions within an image. Pixels in rich texture regions exhibit more significant fluctuations than those in poor texture regions. This discrepancy reflects that the entropy of rich texture regions is larger than that of poor ones. Consequently, synthesizing realistic rich texture regions proves to be more challenging for existing generative models. Based on this principle, we divide an image into multiple patches and reconstruct them into two images, comprising rich-texture and poor-texture patches respectively. Subsequently, we extract the inter-pixel correlation discrepancy feature between rich and poor texture regions. This feature serves as a universal fingerprint used for AI-generated image forensics across different generative models. In addition, we build a comprehensive AI-generated image detection benchmark, which includes 16 kinds of prevalent generative models, to evaluate the effectiveness of existing baselines and our approach. Our benchmark provides a leaderboard for follow-up studies. Extensive experimental results show that our approach outperforms state-of-the-art baselines by a significant margin. Our project: https://fdmas.github.io/AIGCDetect/
PDF Our project: https://fdmas.github.io/AIGCDetect/

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录