Speech


2023-11-20 更新

Improving Unimodal Inference with Multimodal Transformers

Authors:Kateryna Chumachenko, Alexandros Iosifidis, Moncef Gabbouj

This paper proposes an approach for improving performance of unimodal models with multimodal training. Our approach involves a multi-branch architecture that incorporates unimodal models with a multimodal transformer-based branch. By co-training these branches, the stronger multimodal branch can transfer its knowledge to the weaker unimodal branches through a multi-task objective, thereby improving the performance of the resulting unimodal models. We evaluate our approach on tasks of dynamic hand gesture recognition based on RGB and Depth, audiovisual emotion recognition based on speech and facial video, and audio-video-text based sentiment analysis. Our approach outperforms the conventionally trained unimodal counterparts. Interestingly, we also observe that optimization of the unimodal branches improves the multimodal branch, compared to a similar multimodal model trained from scratch.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录