2023-11-20 更新
Leveraging Function Space Aggregation for Federated Learning at Scale
Authors:Nikita Dhawan, Nicole Mitchell, Zachary Charles, Zachary Garrett, Gintare Karolina Dziugaite
The federated learning paradigm has motivated the development of methods for aggregating multiple client updates into a global server model, without sharing client data. Many federated learning algorithms, including the canonical Federated Averaging (FedAvg), take a direct (possibly weighted) average of the client parameter updates, motivated by results in distributed optimization. In this work, we adopt a function space perspective and propose a new algorithm, FedFish, that aggregates local approximations to the functions learned by clients, using an estimate based on their Fisher information. We evaluate FedFish on realistic, large-scale cross-device benchmarks. While the performance of FedAvg can suffer as client models drift further apart, we demonstrate that FedFish is more robust to longer local training. Our evaluation across several settings in image and language benchmarks shows that FedFish outperforms FedAvg as local training epochs increase. Further, FedFish results in global networks that are more amenable to efficient personalization via local fine-tuning on the same or shifted data distributions. For instance, federated pretraining on the C4 dataset, followed by few-shot personalization on Stack Overflow, results in a 7% improvement in next-token prediction by FedFish over FedAvg.
PDF 20 pages, 7 figures
点此查看论文截图
Few-shot Message-Enhanced Contrastive Learning for Graph Anomaly Detection
Authors:Fan Xu, Nan Wang, Xuezhi Wen, Meiqi Gao, Chaoqun Guo, Xibin Zhao
Graph anomaly detection plays a crucial role in identifying exceptional instances in graph data that deviate significantly from the majority. It has gained substantial attention in various domains of information security, including network intrusion, financial fraud, and malicious comments, et al. Existing methods are primarily developed in an unsupervised manner due to the challenge in obtaining labeled data. For lack of guidance from prior knowledge in unsupervised manner, the identified anomalies may prove to be data noise or individual data instances. In real-world scenarios, a limited batch of labeled anomalies can be captured, making it crucial to investigate the few-shot problem in graph anomaly detection. Taking advantage of this potential, we propose a novel few-shot Graph Anomaly Detection model called FMGAD (Few-shot Message-Enhanced Contrastive-based Graph Anomaly Detector). FMGAD leverages a self-supervised contrastive learning strategy within and across views to capture intrinsic and transferable structural representations. Furthermore, we propose the Deep-GNN message-enhanced reconstruction module, which extensively exploits the few-shot label information and enables long-range propagation to disseminate supervision signals to deeper unlabeled nodes. This module in turn assists in the training of self-supervised contrastive learning. Comprehensive experimental results on six real-world datasets demonstrate that FMGAD can achieve better performance than other state-of-the-art methods, regardless of artificially injected anomalies or domain-organic anomalies.
PDF