2023-11-19 更新
Test-Time Training for Semantic Segmentation with Output Contrastive Loss
Authors:Yunlong Zhang, Yuxuan Sun, Sunyi Zheng, Zhongyi Shui, Chenglu Zhu, Lin Yang
Although deep learning-based segmentation models have achieved impressive performance on public benchmarks, generalizing well to unseen environments remains a major challenge. To improve the model’s generalization ability to the new domain during evaluation, the test-time training (TTT) is a challenging paradigm that adapts the source-pretrained model in an online fashion. Early efforts on TTT mainly focus on the image classification task. Directly extending these methods to semantic segmentation easily experiences unstable adaption due to segmentation’s inherent characteristics, such as extreme class imbalance and complex decision spaces. To stabilize the adaptation process, we introduce contrastive loss (CL), known for its capability to learn robust and generalized representations. Nevertheless, the traditional CL operates in the representation space and cannot directly enhance predictions. In this paper, we resolve this limitation by adapting the CL to the output space, employing a high temperature, and simplifying the formulation, resulting in a straightforward yet effective loss function called Output Contrastive Loss (OCL). Our comprehensive experiments validate the efficacy of our approach across diverse evaluation scenarios. Notably, our method excels even when applied to models initially pre-trained using domain adaptation methods on test domain data, showcasing its resilience and adaptability.\footnote{Code and more information could be found at~ \url{https://github.com/dazhangyu123/OCL}}
PDF
点此查看论文截图
Contrastive Learning for Multi-Object Tracking with Transformers
Authors:Pierre-François De Plaen, Nicola Marinello, Marc Proesmans, Tinne Tuytelaars, Luc Van Gool
The DEtection TRansformer (DETR) opened new possibilities for object detection by modeling it as a translation task: converting image features into object-level representations. Previous works typically add expensive modules to DETR to perform Multi-Object Tracking (MOT), resulting in more complicated architectures. We instead show how DETR can be turned into a MOT model by employing an instance-level contrastive loss, a revised sampling strategy and a lightweight assignment method. Our training scheme learns object appearances while preserving detection capabilities and with little overhead. Its performance surpasses the previous state-of-the-art by +2.6 mMOTA on the challenging BDD100K dataset and is comparable to existing transformer-based methods on the MOT17 dataset.
PDF WACV 2024
点此查看论文截图
Improving hateful memes detection via learning hatefulness-aware embedding space through retrieval-guided contrastive learning
Authors:Jingbiao Mei, Jinghong Chen, Weizhe Lin, Bill Byrne, Marcus Tomalin
Hateful memes have emerged as a significant concern on the Internet. These memes, which are a combination of image and text, often convey messages vastly different from their individual meanings. Thus, detecting hateful memes requires the system to jointly understand the visual and textual modalities. However, our investigation reveals that the embedding space of existing CLIP-based systems lacks sensitivity to subtle differences in memes that are vital for correct hatefulness classification. To address this issue, we propose constructing a hatefulness-aware embedding space through retrieval-guided contrastive training. Specifically, we add an auxiliary loss that utilizes hard negative and pseudo-gold samples to train the embedding space. Our approach achieves state-of-the-art performance on the HatefulMemes dataset with an AUROC of 86.7. Notably, our approach outperforms much larger fine-tuned Large Multimodal Models like Flamingo and LLaVA. Finally, we demonstrate a retrieval-based hateful memes detection system, which is capable of making hatefulness classification based on data unseen in training from a database. This allows developers to update the hateful memes detection system by simply adding new data without retraining, a desirable feature for real services in the constantly-evolving landscape of hateful memes on the Internet.
PDF
点此查看论文截图
Contrastive Transformer Learning with Proximity Data Generation for Text-Based Person Search
Authors:Hefeng Wu, Weifeng Chen, Zhibin Liu, Tianshui Chen, Zhiguang Chen, Liang Lin
Given a descriptive text query, text-based person search (TBPS) aims to retrieve the best-matched target person from an image gallery. Such a cross-modal retrieval task is quite challenging due to significant modality gap, fine-grained differences and insufficiency of annotated data. To better align the two modalities, most existing works focus on introducing sophisticated network structures and auxiliary tasks, which are complex and hard to implement. In this paper, we propose a simple yet effective dual Transformer model for text-based person search. By exploiting a hardness-aware contrastive learning strategy, our model achieves state-of-the-art performance without any special design for local feature alignment or side information. Moreover, we propose a proximity data generation (PDG) module to automatically produce more diverse data for cross-modal training. The PDG module first introduces an automatic generation algorithm based on a text-to-image diffusion model, which generates new text-image pair samples in the proximity space of original ones. Then it combines approximate text generation and feature-level mixup during training to further strengthen the data diversity. The PDG module can largely guarantee the reasonability of the generated samples that are directly used for training without any human inspection for noise rejection. It improves the performance of our model significantly, providing a feasible solution to the data insufficiency problem faced by such fine-grained visual-linguistic tasks. Extensive experiments on two popular datasets of the TBPS task (i.e., CUHK-PEDES and ICFG-PEDES) show that the proposed approach outperforms state-of-the-art approaches evidently, e.g., improving by 3.88%, 4.02%, 2.92% in terms of Top1, Top5, Top10 on CUHK-PEDES. The codes will be available at https://github.com/HCPLab-SYSU/PersonSearch-CTLG
PDF Accepted by IEEE T-CSVT