Domain Adaptation


2023-11-19 更新

Combining Transfer Learning with In-context Learning using Blackbox LLMs for Zero-shot Knowledge Base Question Answering

Authors:Mayur Patidar, Avinash Singh, Riya Sawhney, Indrajit Bhattacharya, Mausam

We address the zero-shot transfer learning setting for the knowledge base question answering (KBQA) problem, where a large volume of labeled training data is available for the source domain, but no such labeled examples are available for the target domain. Transfer learning for KBQA makes use of large volumes of unlabeled data in the target in addition to the labeled data in the source. More recently, few-shot in-context learning using Black-box Large Language Models (BLLMs) has been adapted for KBQA without considering any source domain data. In this work, we show how to meaningfully combine these two paradigms for KBQA so that their benefits add up. Specifically, we preserve the two stage retrieve-then-generate pipeline of supervised KBQA and introduce interaction between in-context learning using BLLMs and transfer learning from the source for both stages. In addition, we propose execution-guided self-refinement using BLLMs, decoupled from the transfer setting. With the help of experiments using benchmark datasets GrailQA as the source and WebQSP as the target, we show that the proposed combination brings significant improvements to both stages and also outperforms by a large margin state-of-the-art supervised KBQA models trained on the source. We also show that in the in-domain setting, the proposed BLLM augmentation significantly outperforms state-of-the-art supervised models, when the volume of labeled data is limited, and also outperforms these marginally even when using the entire large training dataset.
PDF

点此查看论文截图

Imagine the Unseen World: A Benchmark for Systematic Generalization in Visual World Models

Authors:Yeongbin Kim, Gautam Singh, Junyeong Park, Caglar Gulcehre, Sungjin Ahn

Systematic compositionality, or the ability to adapt to novel situations by creating a mental model of the world using reusable pieces of knowledge, remains a significant challenge in machine learning. While there has been considerable progress in the language domain, efforts towards systematic visual imagination, or envisioning the dynamical implications of a visual observation, are in their infancy. We introduce the Systematic Visual Imagination Benchmark (SVIB), the first benchmark designed to address this problem head-on. SVIB offers a novel framework for a minimal world modeling problem, where models are evaluated based on their ability to generate one-step image-to-image transformations under a latent world dynamics. The framework provides benefits such as the possibility to jointly optimize for systematic perception and imagination, a range of difficulty levels, and the ability to control the fraction of possible factor combinations used during training. We provide a comprehensive evaluation of various baseline models on SVIB, offering insight into the current state-of-the-art in systematic visual imagination. We hope that this benchmark will help advance visual systematic compositionality.
PDF Published as a conference paper at NeurIPS 2023. The first two authors contributed equally. To download the benchmark, visit https://systematic-visual-imagination.github.io

点此查看论文截图

Pseudo-keypoints RKHS Learning for Self-supervised 6DoF Pose Estimation

Authors:Yangzheng Wu, Michael Greenspan

This paper addresses the simulation-to-real domain gap in 6DoF PE, and proposes a novel self-supervised keypoint radial voting-based 6DoF PE framework, effectively narrowing this gap using a learnable kernel in RKHS. We formulate this domain gap as a distance in high-dimensional feature space, distinct from previous iterative matching methods. We propose an adapter network, which evolves the network parameters from the source domain, which has been massively trained on synthetic data with synthetic poses, to the target domain, which is trained on real data. Importantly, the real data training only uses pseudo-poses estimated by pseudo-keypoints, and thereby requires no real groundtruth data annotations. RKHSPose achieves state-of-the-art performance on three commonly used 6DoF PE datasets including LINEMOD (+4.2%), Occlusion LINEMOD (+2%), and YCB-Video (+3%). It also compares favorably to fully supervised methods on all six applicable BOP core datasets, achieving within -10.8% to -0.3% of the top fully supervised results.
PDF

点此查看论文截图

Gradual Source Domain Expansion for Unsupervised Domain Adaptation

Authors:Thomas Westfechtel, Hao-Wei Yeh, Dexuan Zhang, Tatsuya Harada

Unsupervised domain adaptation (UDA) tries to overcome the need for a large labeled dataset by transferring knowledge from a source dataset, with lots of labeled data, to a target dataset, that has no labeled data. Since there are no labels in the target domain, early misalignment might propagate into the later stages and lead to an error build-up. In order to overcome this problem, we propose a gradual source domain expansion (GSDE) algorithm. GSDE trains the UDA task several times from scratch, each time reinitializing the network weights, but each time expands the source dataset with target data. In particular, the highest-scoring target data of the previous run are employed as pseudo-source samples with their respective pseudo-label. Using this strategy, the pseudo-source samples induce knowledge extracted from the previous run directly from the start of the new training. This helps align the two domains better, especially in the early training epochs. In this study, we first introduce a strong baseline network and apply our GSDE strategy to it. We conduct experiments and ablation studies on three benchmarks (Office-31, OfficeHome, and DomainNet) and outperform state-of-the-art methods. We further show that the proposed GSDE strategy can improve the accuracy of a variety of different state-of-the-art UDA approaches.
PDF Accepted for WACV 2024

点此查看论文截图

DECDM: Document Enhancement using Cycle-Consistent Diffusion Models

Authors:Jiaxin Zhang, Joy Rimchala, Lalla Mouatadid, Kamalika Das, Sricharan Kumar

The performance of optical character recognition (OCR) heavily relies on document image quality, which is crucial for automatic document processing and document intelligence. However, most existing document enhancement methods require supervised data pairs, which raises concerns about data separation and privacy protection, and makes it challenging to adapt these methods to new domain pairs. To address these issues, we propose DECDM, an end-to-end document-level image translation method inspired by recent advances in diffusion models. Our method overcomes the limitations of paired training by independently training the source (noisy input) and target (clean output) models, making it possible to apply domain-specific diffusion models to other pairs. DECDM trains on one dataset at a time, eliminating the need to scan both datasets concurrently, and effectively preserving data privacy from the source or target domain. We also introduce simple data augmentation strategies to improve character-glyph conservation during translation. We compare DECDM with state-of-the-art methods on multiple synthetic data and benchmark datasets, such as document denoising and {\color{black}shadow} removal, and demonstrate the superiority of performance quantitatively and qualitatively.
PDF Accepted by IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024)

点此查看论文截图

CDMPP: A Device-Model Agnostic Framework for Latency Prediction of Tensor Programs

Authors:Hanpeng Hu, Junwei Su, Juntao Zhao, Yanghua Peng, Yibo Zhu, Haibin Lin, Chuan Wu

Deep Neural Networks (DNNs) have shown excellent performance in a wide range of machine learning applications. Knowing the latency of running a DNN model or tensor program on a specific device is useful in various tasks, such as DNN graph- or tensor-level optimization and device selection. Considering the large space of DNN models and devices that impede direct profiling of all combinations, recent efforts focus on building a predictor to model the performance of DNN models on different devices. However, none of the existing attempts have achieved a cost model that can accurately predict the performance of various tensor programs while supporting both training and inference accelerators. We propose CDMPP, an efficient tensor program latency prediction framework for both cross-model and cross-device prediction. We design an informative but efficient representation of tensor programs, called compact ASTs, and a pre-order-based positional encoding method, to capture the internal structure of tensor programs. We develop a domain-adaption-inspired method to learn domain-invariant representations and devise a KMeans-based sampling algorithm, for the predictor to learn from different domains (i.e., different DNN operators and devices). Our extensive experiments on a diverse range of DNN models and devices demonstrate that CDMPP significantly outperforms state-of-the-art baselines with 14.03% and 10.85% prediction error for cross-model and cross-device prediction, respectively, and one order of magnitude higher training efficiency. The implementation and the expanded dataset are available at https://github.com/joapolarbear/cdmpp.
PDF Accepted by EuroSys 2024

点此查看论文截图

Gradient-Map-Guided Adaptive Domain Generalization for Cross Modality MRI Segmentation

Authors:Bingnan Li, Zhitong Gao, Xuming He

Cross-modal MRI segmentation is of great value for computer-aided medical diagnosis, enabling flexible data acquisition and model generalization. However, most existing methods have difficulty in handling local variations in domain shift and typically require a significant amount of data for training, which hinders their usage in practice. To address these problems, we propose a novel adaptive domain generalization framework, which integrates a learning-free cross-domain representation based on image gradient maps and a class prior-informed test-time adaptation strategy for mitigating local domain shift. We validate our approach on two multi-modal MRI datasets with six cross-modal segmentation tasks. Across all the task settings, our method consistently outperforms competing approaches and shows a stable performance even with limited training data.
PDF 9 pages, Machine Learning for Health (ML4H) 2023

点此查看论文截图

HuatuoGPT-II, One-stage Training for Medical Adaption of LLMs

Authors:Junying Chen, Xidong Wang, Anningzhe Gao, Feng Jiang, Shunian Chen, Hongbo Zhang, Dingjie Song, Wenya Xie, Chuyi Kong, Jianquan Li, Xiang Wan, Haizhou Li, Benyou Wang

Adapting a language model into a specific domain, a.k.a `domain adaption’, is a common practice when specialized knowledge, e.g. medicine, is not encapsulated in a general language model like Llama2. The challenge lies in the heterogeneity of data across the two training stages, as it varies in languages, genres, or formats. To tackle this and simplify the learning protocol, we propose to transform heterogeneous data, from the both pre-training and supervised stages, into a unified, simple input-output pair format. We validate the new protocol in the domains where proprietary LLMs like ChatGPT perform relatively poorly, such as Traditional Chinese Medicine. The developed model, HuatuoGPT-II, has shown state-of-the-art performance in Chinese medicine domain on a number of benchmarks, e.g. medical licensing exams. It even outperforms proprietary models like ChatGPT and GPT-4 in some aspects, especially in Traditional Chinese Medicine. Expert manual evaluations further validate HuatuoGPT-II’s advantages over existing LLMs. Notably, HuatuoGPT-II was benchmarked in a fresh Chinese National Medical Licensing Examination where it achieved the best performance, showcasing not only its effectiveness but also its generalization capabilities.
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录