Speech


2023-11-14 更新

DualTalker: A Cross-Modal Dual Learning Approach for Speech-Driven 3D Facial Animation

Authors:Guinan Su, Yanwu Yang, Zhifeng Li

In recent years, audio-driven 3D facial animation has gained significant attention, particularly in applications such as virtual reality, gaming, and video conferencing. However, accurately modeling the intricate and subtle dynamics of facial expressions remains a challenge. Most existing studies approach the facial animation task as a single regression problem, which often fail to capture the intrinsic inter-modal relationship between speech signals and 3D facial animation and overlook their inherent consistency. Moreover, due to the limited availability of 3D-audio-visual datasets, approaches learning with small-size samples have poor generalizability that decreases the performance. To address these issues, in this study, we propose a cross-modal dual-learning framework, termed DualTalker, aiming at improving data usage efficiency as well as relating cross-modal dependencies. The framework is trained jointly with the primary task (audio-driven facial animation) and its dual task (lip reading) and shares common audio/motion encoder components. Our joint training framework facilitates more efficient data usage by leveraging information from both tasks and explicitly capitalizing on the complementary relationship between facial motion and audio to improve performance. Furthermore, we introduce an auxiliary cross-modal consistency loss to mitigate the potential over-smoothing underlying the cross-modal complementary representations, enhancing the mapping of subtle facial expression dynamics. Through extensive experiments and a perceptual user study conducted on the VOCA and BIWI datasets, we demonstrate that our approach outperforms current state-of-the-art methods both qualitatively and quantitatively. We have made our code and video demonstrations available at https://github.com/sabrina-su/iadf.git.
PDF

点此查看论文截图

ChatAnything: Facetime Chat with LLM-Enhanced Personas

Authors:Yilin Zhao, Xinbin Yuan, Shanghua Gao, Zhijie Lin, Qibin Hou, Jiashi Feng, Daquan Zhou

In this technical report, we target generating anthropomorphized personas for LLM-based characters in an online manner, including visual appearance, personality and tones, with only text descriptions. To achieve this, we first leverage the in-context learning capability of LLMs for personality generation by carefully designing a set of system prompts. We then propose two novel concepts: the mixture of voices (MoV) and the mixture of diffusers (MoD) for diverse voice and appearance generation. For MoV, we utilize the text-to-speech (TTS) algorithms with a variety of pre-defined tones and select the most matching one based on the user-provided text description automatically. For MoD, we combine the recent popular text-to-image generation techniques and talking head algorithms to streamline the process of generating talking objects. We termed the whole framework as ChatAnything. With it, users could be able to animate anything with any personas that are anthropomorphic using just a few text inputs. However, we have observed that the anthropomorphic objects produced by current generative models are often undetectable by pre-trained face landmark detectors, leading to failure of the face motion generation, even if these faces possess human-like appearances because those images are nearly seen during the training (e.g., OOD samples). To address this issue, we incorporate pixel-level guidance to infuse human face landmarks during the image generation phase. To benchmark these metrics, we have built an evaluation dataset. Based on it, we verify that the detection rate of the face landmark is significantly increased from 57.0% to 92.5% thus allowing automatic face animation based on generated speech content. The code and more results can be found at https://chatanything.github.io/.
PDF

点此查看论文截图

Automatic Textual Normalization for Hate Speech Detection

Authors:Anh Thi-Hoang Nguyen, Dung Ha Nguyen, Nguyet Thi Nguyen, Khanh Thanh-Duy Ho, Kiet Van Nguyen

Social media data is a valuable resource for research, yet it contains a wide range of non-standard words (NSW). These irregularities hinder the effective operation of NLP tools. Current state-of-the-art methods for the Vietnamese language address this issue as a problem of lexical normalization, involving the creation of manual rules or the implementation of multi-staged deep learning frameworks, which necessitate extensive efforts to craft intricate rules. In contrast, our approach is straightforward, employing solely a sequence-to-sequence (Seq2Seq) model. In this research, we provide a dataset for textual normalization, comprising 2,181 human-annotated comments with an inter-annotator agreement of 0.9014. By leveraging the Seq2Seq model for textual normalization, our results reveal that the accuracy achieved falls slightly short of 70%. Nevertheless, textual normalization enhances the accuracy of the Hate Speech Detection (HSD) task by approximately 2%, demonstrating its potential to improve the performance of complex NLP tasks. Our dataset is accessible for research purposes.
PDF

点此查看论文截图

calamanCy: A Tagalog Natural Language Processing Toolkit

Authors:Lester James V. Miranda

We introduce calamanCy, an open-source toolkit for constructing natural language processing (NLP) pipelines for Tagalog. It is built on top of spaCy, enabling easy experimentation and integration with other frameworks. calamanCy addresses the development gap by providing a consistent API for building NLP applications and offering general-purpose multitask models with out-of-the-box support for dependency parsing, parts-of-speech (POS) tagging, and named entity recognition (NER). calamanCy aims to accelerate the progress of Tagalog NLP by consolidating disjointed resources in a unified framework. The calamanCy toolkit is available on GitHub: https://github.com/ljvmiranda921/calamanCy.
PDF To be published in The Third Workshop for NLP-OSS at EMNLP 2023

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录