医学影像/息肉检测分割


2023-11-09 更新

MEGANet: Multi-Scale Edge-Guided Attention Network for Weak Boundary Polyp Segmentation

Authors:Nhat-Tan Bui, Dinh-Hieu Hoang, Quang-Thuc Nguyen, Minh-Triet Tran, Ngan Le

Efficient polyp segmentation in healthcare plays a critical role in enabling early diagnosis of colorectal cancer. However, the segmentation of polyps presents numerous challenges, including the intricate distribution of backgrounds, variations in polyp sizes and shapes, and indistinct boundaries. Defining the boundary between the foreground (i.e. polyp itself) and the background (surrounding tissue) is difficult. To mitigate these challenges, we propose Multi-Scale Edge-Guided Attention Network (MEGANet) tailored specifically for polyp segmentation within colonoscopy images. This network draws inspiration from the fusion of a classical edge detection technique with an attention mechanism. By combining these techniques, MEGANet effectively preserves high-frequency information, notably edges and boundaries, which tend to erode as neural networks deepen. MEGANet is designed as an end-to-end framework, encompassing three key modules: an encoder, which is responsible for capturing and abstracting the features from the input image, a decoder, which focuses on salient features, and the Edge-Guided Attention module (EGA) that employs the Laplacian Operator to accentuate polyp boundaries. Extensive experiments, both qualitative and quantitative, on five benchmark datasets, demonstrate that our MEGANet outperforms other existing SOTA methods under six evaluation metrics. Our code is available at https://github.com/UARK-AICV/MEGANet.
PDF Accepted at the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024)

点此查看论文截图

Using DUCK-Net for Polyp Image Segmentation

Authors:Razvan-Gabriel Dumitru, Darius Peteleaza, Catalin Craciun

This paper presents a novel supervised convolutional neural network architecture, “DUCK-Net”, capable of effectively learning and generalizing from small amounts of medical images to perform accurate segmentation tasks. Our model utilizes an encoder-decoder structure with a residual downsampling mechanism and a custom convolutional block to capture and process image information at multiple resolutions in the encoder segment. We employ data augmentation techniques to enrich the training set, thus increasing our model’s performance. While our architecture is versatile and applicable to various segmentation tasks, in this study, we demonstrate its capabilities specifically for polyp segmentation in colonoscopy images. We evaluate the performance of our method on several popular benchmark datasets for polyp segmentation, Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, and ETIS-LARIBPOLYPDB showing that it achieves state-of-the-art results in terms of mean Dice coefficient, Jaccard index, Precision, Recall, and Accuracy. Our approach demonstrates strong generalization capabilities, achieving excellent performance even with limited training data. The code is publicly available on GitHub: https://github.com/RazvanDu/DUCK-Net
PDF

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录