2023-11-09 更新
SeRO: Self-Supervised Reinforcement Learning for Recovery from Out-of-Distribution Situations
Authors:Chan Kim, Jaekyung Cho, Christophe Bobda, Seung-Woo Seo, Seong-Woo Kim
Robotic agents trained using reinforcement learning have the problem of taking unreliable actions in an out-of-distribution (OOD) state. Agents can easily become OOD in real-world environments because it is almost impossible for them to visit and learn the entire state space during training. Unfortunately, unreliable actions do not ensure that agents perform their original tasks successfully. Therefore, agents should be able to recognize whether they are in OOD states and learn how to return to the learned state distribution rather than continue to take unreliable actions. In this study, we propose a novel method for retraining agents to recover from OOD situations in a self-supervised manner when they fall into OOD states. Our in-depth experimental results demonstrate that our method substantially improves the agent’s ability to recover from OOD situations in terms of sample efficiency and restoration of the performance for the original tasks. Moreover, we show that our method can retrain the agent to recover from OOD situations even when in-distribution states are difficult to visit through exploration.
PDF 9 pages, 5 figures. Proceedings of the 32nd International Joint Conference on Artificial Intelligence, 2023
点此查看论文截图
A Novel Variational Lower Bound for Inverse Reinforcement Learning
Authors:Yikang Gui, Prashant Doshi
Inverse reinforcement learning (IRL) seeks to learn the reward function from expert trajectories, to understand the task for imitation or collaboration thereby removing the need for manual reward engineering. However, IRL in the context of large, high-dimensional problems with unknown dynamics has been particularly challenging. In this paper, we present a new Variational Lower Bound for IRL (VLB-IRL), which is derived under the framework of a probabilistic graphical model with an optimality node. Our method simultaneously learns the reward function and policy under the learned reward function by maximizing the lower bound, which is equivalent to minimizing the reverse Kullback-Leibler divergence between an approximated distribution of optimality given the reward function and the true distribution of optimality given trajectories. This leads to a new IRL method that learns a valid reward function such that the policy under the learned reward achieves expert-level performance on several known domains. Importantly, the method outperforms the existing state-of-the-art IRL algorithms on these domains by demonstrating better reward from the learned policy.
PDF
点此查看论文截图
Mitigating Estimation Errors by Twin TD-Regularized Actor and Critic for Deep Reinforcement Learning
Authors:Junmin Zhong, Ruofan Wu, Jennie Si
We address the issue of estimation bias in deep reinforcement learning (DRL) by introducing solution mechanisms that include a new, twin TD-regularized actor-critic (TDR) method. It aims at reducing both over and under-estimation errors. With TDR and by combining good DRL improvements, such as distributional learning and long N-step surrogate stage reward (LNSS) method, we show that our new TDR-based actor-critic learning has enabled DRL methods to outperform their respective baselines in challenging environments in DeepMind Control Suite. Furthermore, they elevate TD3 and SAC respectively to a level of performance comparable to that of D4PG (the current SOTA), and they also improve the performance of D4PG to a new SOTA level measured by mean reward, convergence speed, learning success rate, and learning variance.
PDF
点此查看论文截图
Learning Decentralized Traffic Signal Controllers with Multi-Agent Graph Reinforcement Learning
Authors:Yao Zhang, Zhiwen Yu, Jun Zhang, Liang Wang, Tom H. Luan, Bin Guo, Chau Yuen
This paper considers optimal traffic signal control in smart cities, which has been taken as a complex networked system control problem. Given the interacting dynamics among traffic lights and road networks, attaining controller adaptivity and scalability stands out as a primary challenge. Capturing the spatial-temporal correlation among traffic lights under the framework of Multi-Agent Reinforcement Learning (MARL) is a promising solution. Nevertheless, existing MARL algorithms ignore effective information aggregation which is fundamental for improving the learning capacity of decentralized agents. In this paper, we design a new decentralized control architecture with improved environmental observability to capture the spatial-temporal correlation. Specifically, we first develop a topology-aware information aggregation strategy to extract correlation-related information from unstructured data gathered in the road network. Particularly, we transfer the road network topology into a graph shift operator by forming a diffusion process on the topology, which subsequently facilitates the construction of graph signals. A diffusion convolution module is developed, forming a new MARL algorithm, which endows agents with the capabilities of graph learning. Extensive experiments based on both synthetic and real-world datasets verify that our proposal outperforms existing decentralized algorithms.
PDF
点此查看论文截图
A Method to Improve the Performance of Reinforcement Learning Based on the Y Operator for a Class of Stochastic Differential Equation-Based Child-Mother Systems
Authors:Cheng Yin, Yi Chen
This paper introduces a novel operator, termed the Y operator, to elevate control performance in Actor-Critic(AC) based reinforcement learning for systems governed by stochastic differential equations(SDEs). The Y operator ingeniously integrates the stochasticity of a class of child-mother system into the Critic network’s loss function, yielding substantial advancements in the control performance of RL algorithms.Additionally, the Y operator elegantly reformulates the challenge of solving partial differential equations for the state-value function into a parallel problem for the drift and diffusion functions within the system’s SDEs.A rigorous mathematical proof confirms the operator’s validity.This transformation enables the Y Operator-based Reinforcement Learning(YORL) framework to efficiently tackle optimal control problems in both model-based and data-driven systems.The superiority of YORL is demonstrated through linear and nonlinear numerical examples showing its enhanced performance over existing methods post convergence.
PDF 14 pages, 2 figures
点此查看论文截图
Environmental-Impact Based Multi-Agent Reinforcement Learning
Authors:Farinaz Alamiyan-Harandi, Pouria Ramazi
To promote cooperation and strengthen the individual impact on the collective outcome in social dilemmas, we propose the Environmental-impact Multi-Agent Reinforcement Learning (EMuReL) method where each agent estimates the “environmental impact” of every other agent, that is, the difference in the current environment state compared to the hypothetical environment in the absence of that other agent. Inspired by the Inequity Aversion model, the agent then compares its own reward with those of its fellows multiplied by their environmental impacts. If its reward exceeds the scaled reward of one of its fellows, the agent takes “social responsibility” toward that fellow by reducing its own reward. Therefore, the less influential an agent is in reaching the current state, the more social responsibility is taken by other agents. Experiments in the Cleanup (resp. Harvest) test environment demonstrate that agents trained based on EMuReL learn to cooperate more effectively and obtain $54\%$ ($39\%$) and $20\%$ ($44\%$) more total rewards while preserving the same cooperation levels compared to when they are trained based on the two state-of-the-art reward reshaping methods inequity aversion and social influence.
PDF