2023-11-06 更新
Domain-Controlled Prompt Learning
Authors:Qinglong Cao, Zhengqin Xu, Yuantian Chen, Chao Ma, Xiaokang Yang
Large pre-trained vision-language models, such as CLIP, have shown remarkable generalization capabilities across various tasks when appropriate text prompts are provided. However, adapting these models to specialized domains, like remote sensing images (RSIs), medical images, etc, remains unexplored and challenging. Existing prompt learning methods often lack domain-awareness or domain-transfer mechanisms, leading to suboptimal performance due to the misinterpretation of specialized images in natural image patterns. To tackle this dilemma, we proposed a Domain-Controlled Prompt Learning for the specialized domains. Specifically, the large-scale specialized domain foundation model (LSDM) is first introduced to provide essential specialized domain knowledge. Using lightweight neural networks, we transfer this knowledge into domain biases, which control both the visual and language branches to obtain domain-adaptive prompts in a directly incorporating manner. Simultaneously, to overcome the existing overfitting challenge, we propose a novel noisy-adding strategy, without extra trainable parameters, to help the model escape the suboptimal solution in a global domain oscillation manner. Experimental results show our method achieves state-of-the-art performance in specialized domain image recognition datasets. Our code is available at https://anonymous.4open.science/r/DCPL-8588.
PDF
点此查看论文截图
AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection
Authors:Qihang Zhou, Guansong Pang, Yu Tian, Shibo He, Jiming Chen
Zero-shot anomaly detection (ZSAD) requires detection models trained using auxiliary data to detect anomalies without any training sample in a target dataset. It is a crucial task when training data is not accessible due to various concerns, \eg, data privacy, yet it is challenging since the models need to generalize to anomalies across different domains where the appearance of foreground objects, abnormal regions, and background features, such as defects/tumors on different products/organs, can vary significantly. Recently large pre-trained vision-language models (VLMs), such as CLIP, have demonstrated strong zero-shot recognition ability in various vision tasks, including anomaly detection. However, their ZSAD performance is weak since the VLMs focus more on modeling the class semantics of the foreground objects rather than the abnormality/normality in the images. In this paper we introduce a novel approach, namely AnomalyCLIP, to adapt CLIP for accurate ZSAD across different domains. The key insight of AnomalyCLIP is to learn object-agnostic text prompts that capture generic normality and abnormality in an image regardless of its foreground objects. This allows our model to focus on the abnormal image regions rather than the object semantics, enabling generalized normality and abnormality recognition on diverse types of objects. Large-scale experiments on 17 real-world anomaly detection datasets show that AnomalyCLIP achieves superior zero-shot performance of detecting and segmenting anomalies in datasets of highly diverse class semantics from various defect inspection and medical imaging domains. Code will be made available at https://github.com/zqhang/AnomalyCLIP.
PDF