检测/分割/跟踪


2023-11-06 更新

AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection

Authors:Qihang Zhou, Guansong Pang, Yu Tian, Shibo He, Jiming Chen

Zero-shot anomaly detection (ZSAD) requires detection models trained using auxiliary data to detect anomalies without any training sample in a target dataset. It is a crucial task when training data is not accessible due to various concerns, \eg, data privacy, yet it is challenging since the models need to generalize to anomalies across different domains where the appearance of foreground objects, abnormal regions, and background features, such as defects/tumors on different products/organs, can vary significantly. Recently large pre-trained vision-language models (VLMs), such as CLIP, have demonstrated strong zero-shot recognition ability in various vision tasks, including anomaly detection. However, their ZSAD performance is weak since the VLMs focus more on modeling the class semantics of the foreground objects rather than the abnormality/normality in the images. In this paper we introduce a novel approach, namely AnomalyCLIP, to adapt CLIP for accurate ZSAD across different domains. The key insight of AnomalyCLIP is to learn object-agnostic text prompts that capture generic normality and abnormality in an image regardless of its foreground objects. This allows our model to focus on the abnormal image regions rather than the object semantics, enabling generalized normality and abnormality recognition on diverse types of objects. Large-scale experiments on 17 real-world anomaly detection datasets show that AnomalyCLIP achieves superior zero-shot performance of detecting and segmenting anomalies in datasets of highly diverse class semantics from various defect inspection and medical imaging domains. Code will be made available at https://github.com/zqhang/AnomalyCLIP.
PDF

点此查看论文截图

Flow-Based Feature Fusion for Vehicle-Infrastructure Cooperative 3D Object Detection

Authors:Haibao Yu, Yingjuan Tang, Enze Xie, Jilei Mao, Ping Luo, Zaiqing Nie

Cooperatively utilizing both ego-vehicle and infrastructure sensor data can significantly enhance autonomous driving perception abilities. However, the uncertain temporal asynchrony and limited communication conditions can lead to fusion misalignment and constrain the exploitation of infrastructure data. To address these issues in vehicle-infrastructure cooperative 3D (VIC3D) object detection, we propose the Feature Flow Net (FFNet), a novel cooperative detection framework. FFNet is a flow-based feature fusion framework that uses a feature flow prediction module to predict future features and compensate for asynchrony. Instead of transmitting feature maps extracted from still-images, FFNet transmits feature flow, leveraging the temporal coherence of sequential infrastructure frames. Furthermore, we introduce a self-supervised training approach that enables FFNet to generate feature flow with feature prediction ability from raw infrastructure sequences. Experimental results demonstrate that our proposed method outperforms existing cooperative detection methods while only requiring about 1/100 of the transmission cost of raw data and covers all latency in one model on the DAIR-V2X dataset. The code is available at \href{https://github.com/haibao-yu/FFNet-VIC3D}{https://github.com/haibao-yu/FFNet-VIC3D}.
PDF Accepted by NeurIPs2023. arXiv admin note: text overlap with arXiv:2303.10552

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录