Diffusion Models


2023-11-06 更新

Improving Fairness using Vision-Language Driven Image Augmentation

Authors:Moreno D’Incà, Christos Tzelepis, Ioannis Patras, Nicu Sebe

Fairness is crucial when training a deep-learning discriminative model, especially in the facial domain. Models tend to correlate specific characteristics (such as age and skin color) with unrelated attributes (downstream tasks), resulting in biases which do not correspond to reality. It is common knowledge that these correlations are present in the data and are then transferred to the models during training. This paper proposes a method to mitigate these correlations to improve fairness. To do so, we learn interpretable and meaningful paths lying in the semantic space of a pre-trained diffusion model (DiffAE) — such paths being supervised by contrastive text dipoles. That is, we learn to edit protected characteristics (age and skin color). These paths are then applied to augment images to improve the fairness of a given dataset. We test the proposed method on CelebA-HQ and UTKFace on several downstream tasks with age and skin color as protected characteristics. As a proxy for fairness, we compute the difference in accuracy with respect to the protected characteristics. Quantitative results show how the augmented images help the model improve the overall accuracy, the aforementioned metric, and the disparity of equal opportunity. Code is available at: https://github.com/Moreno98/Vision-Language-Bias-Control.
PDF Accepted for publication in WACV 2024

点此查看论文截图

PDF: Point Diffusion Implicit Function for Large-scale Scene Neural Representation

Authors:Yuhan Ding, Fukun Yin, Jiayuan Fan, Hui Li, Xin Chen, Wen Liu, Chongshan Lu, Gang YU, Tao Chen

Recent advances in implicit neural representations have achieved impressive results by sampling and fusing individual points along sampling rays in the sampling space. However, due to the explosively growing sampling space, finely representing and synthesizing detailed textures remains a challenge for unbounded large-scale outdoor scenes. To alleviate the dilemma of using individual points to perceive the entire colossal space, we explore learning the surface distribution of the scene to provide structural priors and reduce the samplable space and propose a Point Diffusion implicit Function, PDF, for large-scale scene neural representation. The core of our method is a large-scale point cloud super-resolution diffusion module that enhances the sparse point cloud reconstructed from several training images into a dense point cloud as an explicit prior. Then in the rendering stage, only sampling points with prior points within the sampling radius are retained. That is, the sampling space is reduced from the unbounded space to the scene surface. Meanwhile, to fill in the background of the scene that cannot be provided by point clouds, the region sampling based on Mip-NeRF 360 is employed to model the background representation. Expensive experiments have demonstrated the effectiveness of our method for large-scale scene novel view synthesis, which outperforms relevant state-of-the-art baselines.
PDF Accepted to NeurIPS 2023

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录