视频理解


2023-11-05 更新

MOFO: MOtion FOcused Self-Supervision for Video Understanding

Authors:Mona Ahmadian, Frank Guerin, Andrew Gilbert

Self-supervised learning (SSL) techniques have recently produced outstanding results in learning visual representations from unlabeled videos. Despite the importance of motion in supervised learning techniques for action recognition, SSL methods often do not explicitly consider motion information in videos. To address this issue, we propose MOFO (MOtion FOcused), a novel SSL method for focusing representation learning on the motion area of a video, for action recognition. MOFO automatically detects motion areas in videos and uses these to guide the self-supervision task. We use a masked autoencoder which randomly masks out a high proportion of the input sequence; we force a specified percentage of the inside of the motion area to be masked and the remainder from outside. We further incorporate motion information into the finetuning step to emphasise motion in the downstream task. We demonstrate that our motion-focused innovations can significantly boost the performance of the currently leading SSL method (VideoMAE) for action recognition. Our method improves the recent self-supervised Vision Transformer (ViT), VideoMAE, by achieving +2.6%, +2.1%, +1.3% accuracy on Epic-Kitchens verb, noun and action classification, respectively, and +4.7% accuracy on Something-Something V2 action classification. Our proposed approach significantly improves the performance of the current SSL method for action recognition, indicating the importance of explicitly encoding motion in SSL.
PDF Accepted at the NeurIPS 2023 Workshop: Self-Supervised Learning - Theory and Practice

点此查看论文截图

Video Timeline Modeling For News Story Understanding

Authors:Meng Liu, Mingda Zhang, Jialu Liu, Hanjun Dai, Ming-Hsuan Yang, Shuiwang Ji, Zheyun Feng, Boqing Gong

In this paper, we present a novel problem, namely video timeline modeling. Our objective is to create a video-associated timeline from a set of videos related to a specific topic, thereby facilitating the content and structure understanding of the story being told. This problem has significant potential in various real-world applications, for instance, news story summarization. To bootstrap research in this area, we curate a realistic benchmark dataset, YouTube-News-Timeline, consisting of over $12$k timelines and $300$k YouTube news videos. Additionally, we propose a set of quantitative metrics to comprehensively evaluate and compare methodologies. With such a testbed, we further develop and benchmark several deep learning approaches to tackling this problem. We anticipate that this exploratory work will pave the way for further research in video timeline modeling. The assets are available via https://github.com/google-research/google-research/tree/master/video_timeline_modeling.
PDF Accepted as a spotlight by NeurIPS 2023, Track on Datasets and Benchmarks

点此查看论文截图

3DYoga90: A Hierarchical Video Dataset for Yoga Pose Understanding

Authors:Seonok Kim

The increasing popularity of exercises including yoga and Pilates has created a greater demand for professional exercise video datasets in the realm of artificial intelligence. In this study, we developed 3DYoga901, which is organized within a three-level label hierarchy. We have expanded the number of poses from an existing state-of-the-art dataset, increasing it from 82 to 90 poses. Our dataset includes meticulously curated RGB yoga pose videos and 3D skeleton sequences. This dataset was created by a dedicated team of six individuals, including yoga instructors. It stands out as one of the most comprehensive open datasets, featuring the largest collection of RGB videos and 3D skeleton sequences among publicly available resources. This contribution has the potential to significantly advance the field of yoga action recognition and pose assessment. Additionally, we conducted experiments to evaluate the practicality of our proposed dataset. We employed three different model variants for benchmarking purposes.
PDF

点此查看论文截图

Understanding Video Transformers for Segmentation: A Survey of Application and Interpretability

Authors:Rezaul Karim, Richard P. Wildes

Video segmentation encompasses a wide range of categories of problem formulation, e.g., object, scene, actor-action and multimodal video segmentation, for delineating task-specific scene components with pixel-level masks. Recently, approaches in this research area shifted from concentrating on ConvNet-based to transformer-based models. In addition, various interpretability approaches have appeared for transformer models and video temporal dynamics, motivated by the growing interest in basic scientific understanding, model diagnostics and societal implications of real-world deployment. Previous surveys mainly focused on ConvNet models on a subset of video segmentation tasks or transformers for classification tasks. Moreover, component-wise discussion of transformer-based video segmentation models has not yet received due focus. In addition, previous reviews of interpretability methods focused on transformers for classification, while analysis of video temporal dynamics modelling capabilities of video models received less attention. In this survey, we address the above with a thorough discussion of various categories of video segmentation, a component-wise discussion of the state-of-the-art transformer-based models, and a review of related interpretability methods. We first present an introduction to the different video segmentation task categories, their objectives, specific challenges and benchmark datasets. Next, we provide a component-wise review of recent transformer-based models and document the state of the art on different video segmentation tasks. Subsequently, we discuss post-hoc and ante-hoc interpretability methods for transformer models and interpretability methods for understanding the role of the temporal dimension in video models. Finally, we conclude our discussion with future research directions.
PDF

点此查看论文截图

NurViD: A Large Expert-Level Video Database for Nursing Procedure Activity Understanding

Authors:Ming Hu, Lin Wang, Siyuan Yan, Don Ma, Qingli Ren, Peng Xia, Wei Feng, Peibo Duan, Lie Ju, Zongyuan Ge

The application of deep learning to nursing procedure activity understanding has the potential to greatly enhance the quality and safety of nurse-patient interactions. By utilizing the technique, we can facilitate training and education, improve quality control, and enable operational compliance monitoring. However, the development of automatic recognition systems in this field is currently hindered by the scarcity of appropriately labeled datasets. The existing video datasets pose several limitations: 1) these datasets are small-scale in size to support comprehensive investigations of nursing activity; 2) they primarily focus on single procedures, lacking expert-level annotations for various nursing procedures and action steps; and 3) they lack temporally localized annotations, which prevents the effective localization of targeted actions within longer video sequences. To mitigate these limitations, we propose NurViD, a large video dataset with expert-level annotation for nursing procedure activity understanding. NurViD consists of over 1.5k videos totaling 144 hours, making it approximately four times longer than the existing largest nursing activity datasets. Notably, it encompasses 51 distinct nursing procedures and 177 action steps, providing a much more comprehensive coverage compared to existing datasets that primarily focus on limited procedures. To evaluate the efficacy of current deep learning methods on nursing activity understanding, we establish three benchmarks on NurViD: procedure recognition on untrimmed videos, procedure and action recognition on trimmed videos, and action detection. Our benchmark and code will be available at \url{https://github.com/minghu0830/NurViD-benchmark}.
PDF Accepted by NeurIPS 2023 Datasets and Benchmarks Track

点此查看论文截图

文章作者: 木子已
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 木子已 !
  目录